Answer:
Explanation:
Width of central diffraction peak is given by the following expression
Width of central diffraction peak= 2 λ D/ d₁
where d₁ is width of slit and D is screen distance and λ is wave length.
Width of other fringes become half , that is each of secondary diffraction fringe is equal to
λ D/ d₁
Width of central interference peak is given by the following expression
Width of each of bright fringe = λ D/ d₂
where d₂ is width of slit and D is screen distance and λ is wave length.
Now given that the central diffraction peak contains 13 interference fringes
so ( 2 λ D/ d₁) / λ D/ d₂ = 13
then ( λ D/ d₁) / λ D/ d₂ = 13 / 2
= 6.5
no of fringes contained within each secondary diffraction peak = 6.5
The equation for momentum is p =
mv where p is the omentum, m is the mass and v is the velocity. Calculating the
momentum for each football player, player A will have a momentum of 1050
lb-mi/h and player B will have a momentum of 570 lb-mi/h. Therefore, momentum of player A is greater than that of
player B.
Answer:
W = 1418.9 J = 1.418 KJ
Explanation:
In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:
W = F.d
W = Fd Cosθ
where,
W = Work Done = ?
F = Force = 151 N
d = distance covered = 10 m
θ = Angle with horizontal = 20°
Therefore,
W = (151 N)(10 m) Cos 20°
<u>W = 1418.9 J = 1.418 KJ</u>
I believe the acceleration would be 5m/s
All you would need to do is divide the final speed by the time it took to get there. I am only about 80 sure this answer is correct, so take my advise only if you feel comfortable.
Answer:

Decrease
Explanation:
I = Current = 3.7 A
e = Charge of electron = 
n = Conduction electron density in copper = 
= Drift velocity of electrons
r = Radius = 1.23 mm
Current is given by

The drift speed of the electrons is 

From the equation we can see the following

So, if the number of conduction electrons per atom is higher than that of copper the drift velocity will decrease.