Answer: h(x) = 3*x^2 - 7*x + 8
Step-by-step explanation:
The rate of change of a function is equal to the derivate:
remember that a derivate of the form:
k(x) = a*x^n is k'(x) = n*a*x^(n-1)
Then we have:
f(x) = 2*x - 10
f'(x) = 1*2* = 2
g(x) = 16*x - 4
g'(x) = 1*16 = 16
h(x) = 3*x^2 - 7*x + 8
h'(x) = 2*3*x - 1*7 = 6*x - 7
So the only that increases as x increases is h(x), this means that the greates rate of change as x approaches inffinity is the rate of change of h(x)
Answer:
D
Step-by-step explanation:
The augmented matrix for the system of three equaitons is
![\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\5&2&-2&|&11\\5&-4&4&|&-7\end{array}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Barray%7D%7Bccccc%7D%203%26-4%26-5%26%7C%26-27%5C%5C5%262%26-2%26%7C%2611%5C%5C5%26-4%264%26%7C%26-7%5Cend%7Barray%7D%5Cright%29)
Multiply the first row by 5, the second row by -3 and add these two rows:
![\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\0&-26&-19&|&-168\\5&-4&4&|&-7\end{array}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Barray%7D%7Bccccc%7D%203%26-4%26-5%26%7C%26-27%5C%5C0%26-26%26-19%26%7C%26-168%5C%5C5%26-4%264%26%7C%26-7%5Cend%7Barray%7D%5Cright%29)
Subtract the third row from the second:
![\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\0&-26&-19&|&-168\\0&6&-6&|&18\end{array}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Barray%7D%7Bccccc%7D%203%26-4%26-5%26%7C%26-27%5C%5C0%26-26%26-19%26%7C%26-168%5C%5C0%266%26-6%26%7C%2618%5Cend%7Barray%7D%5Cright%29)
Divide the third row by 6:
![\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\0&-26&-19&|&-168\\0&1&-1&|&3\end{array}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Barray%7D%7Bccccc%7D%203%26-4%26-5%26%7C%26-27%5C%5C0%26-26%26-19%26%7C%26-168%5C%5C0%261%26-1%26%7C%263%5Cend%7Barray%7D%5Cright%29)
Now multiply the third equation by 26 and add it to the second row:
![\left(\begin{array}{ccccc} 3&-4&-5&|&-27\\0&-26&-19&|&-168\\0&0&-45&|&-90\end{array}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Barray%7D%7Bccccc%7D%203%26-4%26-5%26%7C%26-27%5C%5C0%26-26%26-19%26%7C%26-168%5C%5C0%260%26-45%26%7C%26-90%5Cend%7Barray%7D%5Cright%29)
You get the system of three equations:
![\left\{\begin{array}{r}3x-4y-5z=-27\\-26y-19z=-168\\-45z=-90\end{array}\right.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Br%7D3x-4y-5z%3D-27%5C%5C-26y-19z%3D-168%5C%5C-45z%3D-90%5Cend%7Barray%7D%5Cright.)
From the third equation
![z=\dfrac{90}{45}=2.](https://tex.z-dn.net/?f=z%3D%5Cdfrac%7B90%7D%7B45%7D%3D2.)
Substitute z=2 into the second equation:
![-26y-19\cdot 2=-168\\ \\-26y-38=-168\\ \\-26y=-168+38=-130\\ \\y=\dfrac{130}{26}=5.](https://tex.z-dn.net/?f=-26y-19%5Ccdot%202%3D-168%5C%5C%20%5C%5C-26y-38%3D-168%5C%5C%20%5C%5C-26y%3D-168%2B38%3D-130%5C%5C%20%5C%5Cy%3D%5Cdfrac%7B130%7D%7B26%7D%3D5.)
Now substitute z=2 and y=5 into the first equation:
![3x-4\cdot 5-5\cdot 2=-27\\ \\3x-20-10=-27\\ \\3x-30=-27\\ \\3x=-27+30=3\\ \\x=1.](https://tex.z-dn.net/?f=3x-4%5Ccdot%205-5%5Ccdot%202%3D-27%5C%5C%20%5C%5C3x-20-10%3D-27%5C%5C%20%5C%5C3x-30%3D-27%5C%5C%20%5C%5C3x%3D-27%2B30%3D3%5C%5C%20%5C%5Cx%3D1.)
The solution is (1,5,2)
For each <em>x</em> in the interval 0 ≤ <em>x</em> ≤ 5, the shell at that point has
• radius = 5 - <em>x</em>, which is the distance from <em>x</em> to <em>x</em> = 5
• height = <em>x</em> ² + 2
• thickness = d<em>x</em>
and hence contributes a volume of 2<em>π</em> (5 - <em>x</em>) (<em>x</em> ² + 2) d<em>x</em>.
Taking infinitely many of these shells and summing their volumes (i.e. integrating) gives the volume of the region:
![\displaystyle 2\pi \int_0^5 (5-x)(x^2+2)\,\mathrm dx=2\pi\int_0^5 (10-2x+5x^2-x^3)\,\mathrm dx=\boxed{\frac{925\pi}6}](https://tex.z-dn.net/?f=%5Cdisplaystyle%202%5Cpi%20%5Cint_0%5E5%20%285-x%29%28x%5E2%2B2%29%5C%2C%5Cmathrm%20dx%3D2%5Cpi%5Cint_0%5E5%20%2810-2x%2B5x%5E2-x%5E3%29%5C%2C%5Cmathrm%20dx%3D%5Cboxed%7B%5Cfrac%7B925%5Cpi%7D6%7D)
Answer:
the answer is that Howard runs faster.
Step-by-step explanation:
Because 4.5 is the least and then 5.0 is greater than Martha