Answer: $4.69
Step-by-step explanation:
Make equivalent fractions for each fruit.
Apples: 1.62/1 = x/2.5
X = $4.05 for 2.5 pounds of apples
Bananas: 0.48/1 = x/1.3333333333
X = .64 for 1.3333333333 pounds of bananas
Now add the results together to find the total cost.
4.05 + .64 = $4.69
Answer:
They can expect to make $524
Step-by-step explanation:
Lets solve the problem
The form of the linear function is f(x) = m x + b, where m is the slope of the line and b is the y-intercept (value f(x) at x = 0)
∵ The student decided to use the points (0.5, 20) and (3, 150)
to make a better regression equation
- She calculated the slope of the line using the two points
∵ 
- She substituted the value of m in the form above
∴ f(x) = 52 x + b
- Than she find that the best value of f(x) at x = 0 is 4
∴ f(x) = 52 x + 4
∵ x represents the number of hours
∵ y represents the money
∵ The family decides to extend the yard sale to be 10 hours long
- That means substitute x by 10 in f(x)
∵ x = 10
∴ f(10) = 52(10) + 4
∴ f(10) = 520 + 4
∴ f(10) = 524
∴ They can expect to make $524
Answer:
(a) The probability of the event (<em>X</em> > 84) is 0.007.
(b) The probability of the event (<em>X</em> < 64) is 0.483.
Step-by-step explanation:
The random variable <em>X</em> follows a Poisson distribution with parameter <em>λ</em> = 64.
The probability mass function of a Poisson distribution is:

(a)
Compute the probability of the event (<em>X</em> > 84) as follows:
P (X > 84) = 1 - P (X ≤ 84)
![=1-\sum _{x=0}^{x=84}\frac{e^{-64}(64)^{x}}{x!}\\=1-[e^{-64}\sum _{x=0}^{x=84}\frac{(64)^{x}}{x!}]\\=1-[e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{84}}{84!}]]\\=1-0.99308\\=0.00692\\\approx0.007](https://tex.z-dn.net/?f=%3D1-%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3D1-%5Be%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5D%5C%5C%3D1-%5Be%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B84%7D%7D%7B84%21%7D%5D%5D%5C%5C%3D1-0.99308%5C%5C%3D0.00692%5C%5C%5Capprox0.007)
Thus, the probability of the event (<em>X</em> > 84) is 0.007.
(b)
Compute the probability of the event (<em>X</em> < 64) as follows:
P (X < 64) = P (X = 0) + P (X = 1) + P (X = 2) + ... + P (X = 63)
![=\sum _{x=0}^{x=63}\frac{e^{-64}(64)^{x}}{x!}\\=e^{-64}\sum _{x=0}^{x=63}\frac{(64)^{x}}{x!}\\=e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{63}}{63!}]\\=0.48338\\\approx0.483](https://tex.z-dn.net/?f=%3D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B63%7D%7D%7B63%21%7D%5D%5C%5C%3D0.48338%5C%5C%5Capprox0.483)
Thus, the probability of the event (<em>X</em> < 64) is 0.483.
Answer:
You must be crazy if you think you're ugly
Step-by-step explanation:
you have good genetics therefore, you are not ugly
Y= 1x
i think the y-intercept is 0 but idk