Pretty sure it's right top corner
Answer:
We conclude that segment QR is the shortest.
Hence, option B is true.
Step-by-step explanation:
First, we need to determine the missing angle m∠R
Given the triangle Δ∠PQR
m∠P = 48°
m∠Q = 83°
m∠R = ?
We know the sum of angles of a triangle is 180°.
m∠P+m∠Q+m∠R = 180°
48°+83°+m∠R=180°
m∠R = 180° - 48° - 83°
m∠R = 49°
Thus, the value of m∠R = 49°
We know that the longest side in a triangle is opposite the largest angle, and the shortest side is opposite the smallest angle.
Here,
m∠P = 48° is the shortest angle.
As the side QR segment is opposite the smallest angle i.e. m∠P = 48°
Therefore, we conclude that segment QR is the shortest.
Hence, option B is true.
Answer:
A system of linear equation could only have 1 solution. This is because the straight lines will only have to meet, cross, or intersect each other once.
A system of linear equation could only have 1 solution. This is because the straight lines will only have to meet, cross, or intersect each other once.
There are many different methods in arriving to the final answer. However, errors cannot be perfectly avoided. One of these errors to mistakenly identify equations as linear. It is important that we know that the equations we are dealing with are of exact or correct characteristics.
Also, if she had used substitution method, she might have mistakenly taken the value of one variable for the other.
Answer:
Many of the chemicals in these products are known as Volatile Organic Compounds . These chemicals off-gas into the air that we breathe which exacerbates respiratory conditions and in some cases can be deadly.
Step-by-step explanation:
hope it helps u!
Answer:
Both
and
are solutions to the system.
Step-by-step explanation:
In order to determine whether the two given points represent solutions to our system of equations, we must "plug" thos points into both equations and check that the equality remains valid.
Step 1: Plug
into 

The solution verifies the equation.
Step 2: Plug
into 

The solution verifies both equations. Therefore,
is a solution to this system.
Now we must check if the second point is also valid.
Step 3: Plug
into 

Step 4: Plug
into 

The solution verifies both equations. Therefore,
is another solution to this system.