1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amm1812
3 years ago
8

Which is the equation of an ellipse with directrices at y = ±2 and foci at (0, 1) and (0, −1)?

Mathematics
1 answer:
Sedbober [7]3 years ago
6 0

Answer:

b) <em>Equation of the ellipse    </em>\frac{x^{2} }{1} + \frac{y^{2} }{2} = 1<em></em>

Step-by-step explanation:

<u><em>Explanation</em></u>:-

<u><em>step(i)</em></u>:-

<em>Given the direct rices of the ellipse   y = ±2</em>

<em>Given foci of the ellipse F( 0 ,± c) = ( 0,±1)</em>

<em>The  the direct rices of the ellipse </em>

                                              y = ±    \frac{a}{e}

                                               \frac{a}{e} = 2

                                               a = 2 e ...(i)

Given focus ( 0 , c) = ( 0, a e) = ( 0,1)

                                            a e = 1 ...(ii)

From (i) and (ii)

                                   2 e (e) = 1

                                   2 e² = 1

                                     e^{2} = \frac{1}{2}

                                     e = \frac{1}{\sqrt{2} }

<u><em>Step(ii):</em></u>-

                         Now a = 2 e = 2 (\frac{1}{\sqrt{2} })

                                a  = √2

<em>Now we know that The relation between the focus and minor and major axes</em>

<em> formula  C² = a² - b²</em>

<em>                                             b² = a ² - C²</em>

<em>                                              b²  = 2 - 1 = 1</em>

<u><em>Step(iii)</em></u><em>:-</em>

<em>Equation of the ellipse</em>

<em>                                </em>\frac{x^{2} }{b^{2} } + \frac{y^{2} }{a^{2} } = 1<em></em>

<em>                            </em>\frac{x^{2} }{1^{2} } + \frac{y^{2} }{(\sqrt{2}) ^{2} } = 1<em></em>

<em>                            </em>\frac{x^{2} }{1} + \frac{y^{2} }{2} = 1<em></em>

<u><em>Conclusion:</em></u><em>-</em>

<em>Equation of the ellipse    </em>\frac{x^{2} }{1} + \frac{y^{2} }{2} = 1<em></em>

<em></em>

<em>            </em>                          

You might be interested in
PLS HELP ME I REALLY NEED HELP
baherus [9]

Answer:

I can't see anything. There is nothing on your screen.

7 0
2 years ago
Read 2 more answers
According to one cosmological theory, there were equal amounts of the two uranium isotopes 235U and 238U at the creation of the
FromTheMoon [43]

Answer:

6 billion years.

Step-by-step explanation:

According to the decay law, the amount of the radioactive substance that decays is proportional to each instant to the amount of substance present. Let P(t) be the amount of ^{235}U and Q(t) be the amount of ^{238}U after t years.

Then, we obtain two differential equations

                               \frac{dP}{dt} = -k_1P \quad \frac{dQ}{dt} = -k_2Q

where k_1 and k_2 are proportionality constants and the minus signs denotes decay.

Rearranging terms in the equations gives

                             \frac{dP}{P} = -k_1dt \quad \frac{dQ}{Q} = -k_2dt

Now, the variables are separated, P and Q appear only on the left, and t appears only on the right, so that we can integrate both sides.

                         \int \frac{dP}{P} = -k_1 \int dt \quad \int \frac{dQ}{Q} = -k_2\int dt

which yields

                      \ln |P| = -k_1t + c_1 \quad \ln |Q| = -k_2t + c_2,

where c_1 and c_2 are constants of integration.

By taking exponents, we obtain

                     e^{\ln |P|} = e^{-k_1t + c_1}  \quad e^{\ln |Q|} = e^{-k_12t + c_2}

Hence,

                            P  = C_1e^{-k_1t} \quad Q  = C_2e^{-k_2t},

where C_1 := \pm e^{c_1} and C_2 := \pm e^{c_2}.

Since the amounts of the uranium isotopes were the same initially, we obtain the initial condition

                                 P(0) = Q(0) = C

Substituting 0 for P in the general solution gives

                         C = P(0) = C_1 e^0 \implies C= C_1

Similarly, we obtain C = C_2 and

                                P  = Ce^{-k_1t} \quad Q  = Ce^{-k_2t}

The relation between the decay constant k and the half-life is given by

                                            \tau = \frac{\ln 2}{k}

We can use this fact to determine the numeric values of the decay constants k_1 and k_2. Thus,

                     4.51 \times 10^9 = \frac{\ln 2}{k_1} \implies k_1 = \frac{\ln 2}{4.51 \times 10^9}

and

                     7.10 \times 10^8 = \frac{\ln 2}{k_2} \implies k_2 = \frac{\ln 2}{7.10 \times 10^8}

Therefore,

                              P  = Ce^{-\frac{\ln 2}{4.51 \times 10^9}t} \quad Q  = Ce^{-k_2 = \frac{\ln 2}{7.10 \times 10^8}t}

We have that

                                          \frac{P(t)}{Q(t)} = 137.7

Hence,

                                   \frac{Ce^{-\frac{\ln 2}{4.51 \times 10^9}t} }{Ce^{-k_2 = \frac{\ln 2}{7.10 \times 10^8}t}} = 137.7

Solving for t yields t \approx 6 \times 10^9, which means that the age of the  universe is about 6 billion years.

5 0
3 years ago
Evaluate223×225Give your answer as a mixed number in its simplest form.
Feliz [49]
The answer is 50, 175
5 0
2 years ago
Need help with this problem
Andrei [34K]
All angles of a triangle have to equal 180 degrees. The top and bottom triangle are the same. So the first angle tells you 32 degrees. The second one has a little square which means 90 degrees. So 180 - 32 - 90 = 58.
So the angle A is 58. Since the top triangle and bottom triangle have the same angle measurement then angle C = 58 degrees.
6 0
3 years ago
Explain how finding 7×20 is similar to finding 7×2,000 . then Find each product
3241004551 [841]
7x20=140. 7x2000=14000. The only thing that changes the product of these numbers is the amount of zeros behind the 2. Since the only two numbers that affect the answer is the 7 and the 2. (7x2=14). The number of zeros behind the 2 affect how many zeros will be included in the product.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the following equation. Then place the correct number in the box provided.
    8·2 answers
  • . A garden measuring 12 m by 16 m is to have a pedestrian pathway that is ???????? meters wide installed all the way
    9·1 answer
  • Help me with my math
    11·1 answer
  • You are taking a​ multiple-choice test that has 8 questions. Each of the questions has 4 answer​ choices, with one correct answe
    10·1 answer
  • Sam kicks a soccer ball from the ground. The height of
    10·1 answer
  • What is the volume of a sphere with a'radius of 39.6 m, rounded to the nearest tenth
    9·1 answer
  • Help plsssssssssssssssssssssssssssssss
    9·1 answer
  • Helpppppppp me …………………..
    5·2 answers
  • 3+(-0.8)+0.25+(-0.75)
    14·1 answer
  • Consider the following expression:3Step 2 of 2: Determine the degree and the leading coefficient of the polynomial.AnswerHow to
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!