Answer:
y=-2+14
Step-by-step explanation:
hope this helped ;)
well, the assumption is that is a rectangle, namely it has two equal pairs, so we can just find the length of one of the pairs to get the dimensions.
hmmmm let's say let's get the length of the segment at (-1,-3), (1,3) for its length
and
the length of the segment at (-1, -3), (-4, -2) for its width
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{length}{L}=\sqrt{[1-(-1)]^2+[3-(-3)]^2}\implies L=\sqrt{(1+1)^2+(3+3)^2} \\\\\\ L=\sqrt{4+36}\implies L=\sqrt{40} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Blength%7D%7BL%7D%3D%5Csqrt%7B%5B1-%28-1%29%5D%5E2%2B%5B3-%28-3%29%5D%5E2%7D%5Cimplies%20L%3D%5Csqrt%7B%281%2B1%29%5E2%2B%283%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20L%3D%5Csqrt%7B4%2B36%7D%5Cimplies%20L%3D%5Csqrt%7B40%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{width}{w}=\sqrt{[-4-(-1)]^2+[-2-(-3)]^2}\implies w=\sqrt{(-4+1)^2+(-2+3)^2} \\\\\\ w=\sqrt{9+1}\implies w=\sqrt{10} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{A=Lw}\implies \sqrt{40}\cdot \sqrt{10}\implies \sqrt{400}\implies \boxed{20}](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-4%7D~%2C~%5Cstackrel%7By_2%7D%7B-2%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bwidth%7D%7Bw%7D%3D%5Csqrt%7B%5B-4-%28-1%29%5D%5E2%2B%5B-2-%28-3%29%5D%5E2%7D%5Cimplies%20w%3D%5Csqrt%7B%28-4%2B1%29%5E2%2B%28-2%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20w%3D%5Csqrt%7B9%2B1%7D%5Cimplies%20w%3D%5Csqrt%7B10%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7BA%3DLw%7D%5Cimplies%20%5Csqrt%7B40%7D%5Ccdot%20%5Csqrt%7B10%7D%5Cimplies%20%5Csqrt%7B400%7D%5Cimplies%20%5Cboxed%7B20%7D)
Answer:
X = 60
Y = 50
Step-by-step explanation:
The total degrees of a triangle is 180 degrees. For the middle triangle, 50+70=120 so 180-120=60.
On the far right, Y=50 because you take 50 degrees from the middle triangle, and insert it there.
Answer:
v= -1 (BRAINLIEST PLEASE)
Step-by-step explanation:
|v+8| -5=2
Add 5 to each side
|v+8| -5=2
+5= +5
Now you have |v+8|= 7
So what plus 8 equals 7?
-1
so now you have |-1+8| which is 7
so v= -1
The answer is three significant figures. The 1 and the 7 are both significant, because they are non-zero quantities.
This is where significant figures gets a little more complicated, because if a zero is used as a placeholder (i.e. 0.00027 cm) then it is insignificant.
But in the case above, the zero isn't being used as a placeholder, and thus, is significant.