Answer:
The proportion of children that have an index of at least 110 is 0.0478.
Step-by-step explanation:
The given distribution has a mean of 90 and a standard deviation of 12.
Therefore mean,
= 90 and standard deviation,
= 12.
It is given to find the proportion of children having an index of at least 110.
We can take the variable to be analysed to be x = 110.
Therefore we have to find p(x < 110), which is left tailed.
Using the formula for z which is p( Z <
) we get p(Z <
= 1.67).
So we have to find p(Z ≥ 1.67) = 1 - p(Z < 1.67)
Using the Z - table we can calculate p(Z < 1.67) = 0.9522.
Therefore p(Z ≥ 1.67) = 1 - 0.9522 = 0.0478
Therefore the proportion of children that have an index of at least 110 is 0.0478
Answer:
12%
Step-by-step explanation:
0.9/7.5 *100
= 12%
Answer:
See explanation
Step-by-step explanation:
Consider triangles PTS and QTR. In these triangles,
- given;
- given;
- as vertical angles when lines PR and SQ intersect.
Thus,
by AAS postulate.
Congruent triangles have congruent corresponding sides, so

Consider segments PR and QS:
![PR=PT+TR\ [\text{Segment addition postulate}]\\ \\QS=QT+TS\ [\text{Segment addition postulate}]\\ \\PT=QT\ [\text{Proven}]\\ \\ST=RT\ [\text{Given}]](https://tex.z-dn.net/?f=PR%3DPT%2BTR%5C%20%5B%5Ctext%7BSegment%20addition%20postulate%7D%5D%5C%5C%20%5C%5CQS%3DQT%2BTS%5C%20%5B%5Ctext%7BSegment%20addition%20postulate%7D%5D%5C%5C%20%5C%5CPT%3DQT%5C%20%5B%5Ctext%7BProven%7D%5D%5C%5C%20%5C%5CST%3DRT%5C%20%5B%5Ctext%7BGiven%7D%5D)
So,
![PR=SQ\ [\text{Substitution property}]](https://tex.z-dn.net/?f=PR%3DSQ%5C%20%5B%5Ctext%7BSubstitution%20property%7D%5D)
Answer:
0.42
Step-by-step explanation:
Add 9 to 3 to get 12, divide 12 by 100 and add it to 0.3 to get your answer.
2 small packs
150 small
148 get split --> two left