Answer:
0.70275
Step-by-step explanation:
Data provided in the question:
4e²ˣ⁻¹ -1 = 5
now solving for 'x'
⇒ 4e²ˣ⁻¹ = 5 + 1
or
⇒ 4e²ˣ⁻¹ = 6
or
⇒ 
or
⇒ 
now,
taking natural log both sides, we get
⇒ 2x - 1 = 
also,
we know
⇒
thus,
⇒ 2x - 1 = ln(3) - ln(2)
or
⇒ 2x - 1 = 1.0986 - 0.6931
or
⇒ 2x - 1 = 0.4055
or
⇒ 2x = 0.4055 + 1
or
⇒ 2x = 1.4055
or
⇒ x = 0.70275
<u>Answer-</u>
<em>The correct answer is</em>
<em>∠BDC and ∠AED are right angles</em>
<u>Solution-</u>
In the ΔCEA and ΔCDB,

As this common to both of the triangle.
If ∠BDC and ∠AED are right angles, then 
Now as
∠BCD = ∠ACE and ∠BDC = ∠AED,
∠DBC and ∠EAC will be same. (as sum of 3 angles in a triangle is 180°)
Then, ΔCEA ≈ ΔCDB
Therefore, additional information can be used to prove ΔCEA ≈ ΔCDB is ∠BDC and ∠AED are right angles.
1,7
2,10
3,5
4,7
5,7 and for the second question the answer is 5 students
Answer:
These parallel lines cross 1 line. Because they are parallel they will form the same angles on that line. Therefore, x+50 = 3x-100 since those angles are corresponding angles made by a pair of parallels.
To find x we need to find what value of x gives the same answer for 3x-100 and x+50 since those 2 angles are equal.
x+50 = 3x-100 - now all we need to do is solve for x:
x+50 = 3x-100
50=2x-100
150=2x
75=x
x=75
Step-by-step explanation:
Firstly 31*4=124
1*3=3
124-3=121
121/12