The inequality
gives the least number of buses, b, needed for the trip. The least number of buses is 9
<u>Solution:</u>
Given that, There are 412 students and 20 teachers taking buses on a trip to a museum.
Each bus can seat a maximum of 48.
We have to find which inequality gives the least number of buses, b, needed for the trip?
Now, there are 412 students and 20 teachers, so in total there are 412 + 20 = 432 travelers
<em><u>The number of buses required “b” is given as:</u></em>


Number of buses required ≥ 9 buses.
But least number will be 9 from the above inequality.
Hence, the inequality
gives least count of busses and least count is 9.
Answer:
The answer would be 230.85
2abc - 3ab ║ 2 (2) (3) (4) - 3 (2) (3)
You would multiply and the products - you are going to subtract
2 × 2 × 3 × 4 = 48
3 × 2 × 3 = - 18
-------
answer: 30
Answer:
for 1. it is 99 and for 3. it is 343.75
Step-by-step explanation:
for 1. you have to just multiply the length with width
for 3. you have to add both bases (35+20) and multiply the height (55 x 12.5) to it and then divide it by 2 (687.5 / 2)
hope this helps! please heart <3
Answer:
<h2><em>
38°, 66° and 76°</em></h2>
Step-by-step explanation:
A triangle consists of 3 angles and sides. The sum of the angles in a triangle is 180°. Let the angle be <A, <B and <C.
<A + <B + <C = 180° ...... 1
If the measure of one angle is twice the measure of a second angle then
<A = 2<B ...... 2
Also if the third angle measures 3 times the second angle decreased by 48, this is expressed as <C = 3<B-48............ 3
Substituting equations 2 and 3 into 1 will give;
(2<B) + <B + (3<B-48) = 180°
6<B- 48 = 180°
add 48 to both sides
6<B-48+48 = 180+48
6<B = 228
<B = 228/6
<B =38°
To get the other angles of the triangle;
Since <A = 2<B from equation 2;
<A = 2(38)
<A = 76°
Also <C = 3<B-48 from equation 3;
<C = 3(38)-48
<C = 114-48
<C = 66°
<em>Hence the measures of the angles of the triangle are 38°, 66° and 76°</em>