Answer:
10:00
Step-by-step explanation:
Answer:
<em>As </em><em>we </em><em>know </em><em>that </em><em>there </em><em>is </em><em>a </em><em>radius </em><em>which </em><em>is </em><em>2 </em><em>cm</em>
<em>so </em>
<em>circumference </em><em>=</em><em> </em><em>2</em><em> </em><em>π</em><em> </em><em>r</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>*</em><em> </em><em>2</em><em>2</em><em>/</em><em>7</em><em> </em><em>*</em><em> </em><em>2</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>.</em><em>5</em><em>7</em><em>c</em><em>m</em>
<em>it's </em><em>circumference </em><em>is </em><em>1</em><em>2</em><em>.</em><em>5</em><em>7</em><em> </em><em>cm</em>
I added a screenshot with the complete question
Answer:x = 3
y = 9
Explanation:1- getting the value of x:We are given that:
side AB is congruent to side DF. This means that:
AB = DF
3(2x+10) = 12x + 12
6x + 30 = 12x + 12
12x - 6x = 30 - 12
6x = 18
x = 18/6
x = 3
2- getting the value of y:We are given that:
side BC is congruent to side FG. This means that:
BC = FG
2y + 12 = 2(2y-3)
2y + 12 = 4y - 6
4y - 2y = 12 + 6
2y = 18
y = 18/2
y = 9
Hope this helps :)
If you nee solving it will be:
c^6(-3c^5)^2
c^6(3c^5)^2
c^6·3^2(c^5)^2
c^6·9(c^5)^2
c^6·9c^10
9c^6c^10
9c^6+10
9c^16
So the answer is:
9c^16
(9c to the power of 16)
Sorry I was late..
The valid conclusions for the manager based on the considered test is given by: Option
<h3>When do we perform one sample z-test?</h3>
One sample z-test is performed if the sample size is large enough (n > 30) and we want to know if the sample comes from the specific population.
For this case, we're specified that:
- Population mean =
= $150 - Population standard deviation =
= $30.20 - Sample mean =
= $160 - Sample size = n = 40 > 30
- Level of significance =
= 2.5% = 0.025 - We want to determine if the average customer spends more in his store than the national average.
Forming hypotheses:
- Null Hypothesis: Nullifies what we're trying to determine. Assumes that the average customer doesn't spend more in the store than the national average. Symbolically, we get:

- Alternate hypothesis: Assumes that customer spends more in his store than the national average. Symbolically

where
is the hypothesized population mean of the money his customer spends in his store.
The z-test statistic we get is:

The test is single tailed, (right tailed).
The critical value of z at level of significance 0.025 is 1.96
Since we've got 2.904 > 1.96, so we reject the null hypothesis.
(as for right tailed test, we reject null hypothesis if the test statistic is > critical value).
Thus, we accept the alternate hypothesis that customer spends more in his store than the national average.
Learn more about one-sample z-test here:
brainly.com/question/21477856