Answer:
900
Step-by-step explanation:
Sum of interior angle for a polygon = (n-2)180
7 sides
=(7-2)180
=5*180
=900
Answer:
10
Step-by-step explanation:
im assuming that its an equalateral triangle because it makes the problem easier.
if you use the midpoint of the base as the point of where to make the parallels lines and draw them, you can easily find 4 congruent triangles, the side length of one of these congruent triangles is 2.5, and summing up the perimeter of the quadrilateral, you get 10.
Answer:
The answer is 441
Step-by-step explanation:
7 x 63 = 441
Each colection day: D
Number of tops collected on that day: N
D1=1; N1=2
D2=3; N2=8
1) Linear model
N-N1=m(D-D1)
m=(N2-N1)/(D2-D1)
m=(8-2)/(3-1)
m=(6)/(2)
m=3
N-N1=m(D-D1)
N-2=3(D-1)
N-2=3D-3
N-2+2=3D-3+2
N=3D-1
when D=6:
N=3(6)-1
N=18-1
N=17
<span>What is the number of tops collected on the sixth day based on the linear model?
</span>The number of tops collected on the sixth day based on the linear model is 17.
2) Exponential model
N=a(b)^D
D=D1=1→N=N1=2→2=a(b)^1→2=ab→ab=2 (1)
D=D2=3→N=N2=8→8=a(b)^3→8=a(b)^(1+2)
8=a(b)^1(b)^2→8=ab(b)^2 (2)
Replacing (1) in (2)
(2) 8=2(b)^2
Solving for b:
8/2=2(b)^2/2
4=(b)^2
sqrt(4)=sqrt( b)^2 )
2=b
b=2
Replacing b=2 in (1)
(1) ab=2
a(2)=2
Solving for a:
a(2)/2=2/2
a=1
Then, the exponential model is N=1(2)^D
N=(2)^D
When D=6:
N=(2)^6
N=64
<span>What is the number of tops collected on the sixth day based on the exponential model?
</span><span>The number of tops collected on the sixth day based on the exponential model is 64</span>
Not sure which ones you are supposed to know so here are some possible answers:
ratio of,
divided by,
quotient of,
out of.