Answer: hot dog = $1.75
<u>Step-by-step explanation:</u>
Let h represent hot dogs and c represent bags of chips.
Customer 1: 4h + 2c = 9.00 → 3(4h + 2c = 9.00) → 12h + 6c = 27.00
Customer 2: 5h + 3c = 11.75 → -2(5h + 3c = 11.75) → <u>-10h - 6c </u>= <u>-23.50</u>
2h = 3.50
<u> ÷2 </u> <u> ÷2 </u>
h = 1.75
Answer:
A. ![\text{r} = \frac{\text{E}-\text{v}}{\text{I}}](https://tex.z-dn.net/?f=%5Ctext%7Br%7D%20%3D%20%5Cfrac%7B%5Ctext%7BE%7D-%5Ctext%7Bv%7D%7D%7B%5Ctext%7BI%7D%7D)
Step-by-step explanation:
E = v + Ir
E - v = Ir (subtract by v on both sides)
(E-v)/I = r (divide by I on both sides)
![\therefore \text{r} = \frac{\text{E}-\text{v}}{\text{I}}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Ctext%7Br%7D%20%3D%20%5Cfrac%7B%5Ctext%7BE%7D-%5Ctext%7Bv%7D%7D%7B%5Ctext%7BI%7D%7D)
Answer:
tgtt
Step-by-step explanation:
Answer:
P ( X < 4 ) = 0.1736706
Step-by-step explanation:
Given:
- A random variable X follows a binomial distribution as follows,
Where n = 8, and p = 0.6.
Find:
- P ( X < 4 )?
Solution:
- The random variable X follows a binomial distribution as follows:
X ~ B ( 8 , 0.6 )
- The probability mass function for a binomial distribution is given as:
pmf = n^C_r ( p )^r (1-p)^(n-r)
- We are asked to find P ( X < 4 ) which is the sum of following probabilities:
P ( X < 4 ) = P ( X = 0 ) + P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 )
- Use the pmf to compute the individual probabilities:
P ( X < 4 ) = 0.4^8 + 8^C_1*(0.6)*(0.4)^7 + 8^C_2*(0.6)^2*(0.4)^6 + 8^C_3*(0.6)^3*(0.4)^5 .
P ( X < 4 ) = 6.5536*10^-4 + 7.86432*10^-3 + 0.04128768 +0.12386304
Answer: P ( X < 4 ) = 0.1736706