1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
10

*falls on floor crying*❤️❤️❤️❤️

Mathematics
1 answer:
steposvetlana [31]3 years ago
3 0

Answer:

-16 1/2 =16.5

-33/2 =-16.5

so the answer is = cuz -16.5=-16.5

Step-by-step explanation:

You might be interested in
Which statements are true about the lines of symmetry of a regular pentagon? Select three options
Sav [38]

Complete question is;

Which statements are true about the lines of symmetry of a regular pentagon? Check all that apply.

A) Every line connects two vertices.

B) Every line connects the midpoints of 2 sides.

C) Every line bisects a vertex angle.

D) Every line bisects a side.

E) Every line is perpendicular to a side.

Answer:

C: Every line bisects a vertex angle.

D: Every line bisects a side.

E: Every line is perpendicular to a side.

Step-by-step explanation:

A shape will have a line of symmetry when after the perpendicular line is drawn through from one vertex to the centre of one side, it can be folded and the folded part will sit perfectly on top in such a way that all the edges match.

Now, a pentagon has 5 sides and by implication from the explanation of line of symmetry above, it has 5 lines of symmetry.

Attached below is an image showing the 5 lines of symmetry of a pentagon.

From the attached image, we can see that the lines of symmetry bisects a vertex angle, it bisects a side and is perpendicular to a side.

Thus correct answer is Options C, D & E

7 0
3 years ago
A light bulb is designed by revolving the graph of:
nadya68 [22]

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

5 0
3 years ago
I invested in a savings bond for two years and paid simple interest at an annual rate of 6%. The total interest I earned was $48
Nina [5.8K]

Answer:

4,000

Step-by-step explanation:

I= P*R*T/ 100

480= P*6*2/100

48000= 12P

Divide.

P= 4000

3 0
3 years ago
Write the expression that represents the phrase: the quotient of 10 and x
Yanka [14]

Answer:

Step-by-step explanation:

Quotient \ of  \ 10 \  and  \ x =  10 \div x

4 0
3 years ago
-3.8x - 5.9x = 223.1
katrin2010 [14]

Answer:

x=-23

Step-by-step explanation:

-3.8x-5.9x=223.1

-9.7x=223.1

x=223.1/-9.7

x=-23

5 0
3 years ago
Read 2 more answers
Other questions:
  • What was the average temperature for the month of April in Washington D.C?
    11·2 answers
  • A father and his son can clean the house together in 9 hours. When the son works​ alone, it takes him an hour longer to clean th
    5·1 answer
  • Please don’t guess I have to get this right
    7·1 answer
  • Can someone please answer this question please answer it correctly and please show work please I need it please help me please
    5·2 answers
  • What is the value of r in the equation?
    5·2 answers
  • Sean wants to make a frame for a painting. The painting is square and has area 196 square inches. The framing material costs ​$1
    14·1 answer
  • If the Benton Widget Co. can produce 2,500 widgets in 5
    13·1 answer
  • Need this answer ASAP cuz im dumb.
    5·2 answers
  • Solve, using linear combination.
    14·1 answer
  • ARRANGE &amp; ADD THE FOLLOWING<br> a) 4301 +8613 b) 7649 + 326
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!