1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
10

A light bulb is designed by revolving the graph of:

Mathematics
1 answer:
nadya68 [22]3 years ago
5 0

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

You might be interested in
3 ab -9 ad + bc -3cd​
dlinn [17]

Answer:

(b-3d) (3a+c)

Step-by-step explanation:

factor the expression

3 0
3 years ago
textRequest reports that adults 18–24 years old send and receive 128 texts every day. Suppose we take a sample of 25–34 year old
Butoxors [25]

Testing the hypothesis, we have that:

a)

The null hypothesis is: H_0: \mu = 128

The alternative hypothesis is: H_1: \mu \neq 128

b) The p-value of the test is of 0.1212.

c) Since the <u>p-value of the test is of 0.1212 > 0.05</u>, we cannot conclude that the mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.

d) Since <u>|z| = 1.55 < 1.96</u>, we cannot conclude that the mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.

Item a:

At the null hypothesis, we <u>test if the mean is the same</u>, that is, of 128 texts every day, hence:

H_0: \mu = 128

At the alternative hypothesis, we <u>test if the mean is different</u>, that is, different of 128 texts every day, hence:

H_1: \mu \neq 128

Item b:

We have the <u>standard deviation for the population</u>, thus, the z-distribution is used. The test statistic is given by:

z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

The parameters are:

\overline{x} is the sample mean.

\mu is the value tested at the null hypothesis.

\sigma is the standard deviation of the population.

n is the sample size.

For this problem, the values of the parameters are: \overline{x} = 118.6, \mu = 128, \sigma = 33.17, n = 30

Hence, the value of the test statistic is:

z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

z = \frac{118.6 - 128}{\frac{33.17}{\sqrt{30}}}

z = -1.55

Since we have a two-tailed test, as we are testing if the mean is different of a value, the p-value is P(|z| < 1.55), which is 2 multiplied by the p-value of z = -1.55.

Looking at the z-table, z = -1.55 has a p-value of 0.0606

2(0.0606) = 0.1212

The p-value of the test is of 0.1212.

Item c:

Since the <u>p-value of the test is of 0.1212 > 0.05</u>, we cannot conclude that the mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.

Item d:

Using a z-distribution calculator, the critical value for a <u>two-tailed test</u> with <u>95% confidence level</u> is |z| = 1.96.

Since <u>|z| = 1.55 < 1.96</u>, we cannot conclude that the mean daily number of texts for 25–34 year olds differs from the population daily mean number of texts for 18–24 year olds.

A similar problem is given at brainly.com/question/25369247

4 0
3 years ago
Find the perimeter of the quadrilateral.
levacccp [35]

<em><u>Question:</u></em>

Find the perimeter of the quadrilateral. if x = 2 the perimeter is ___ inched.

The complete figure of this question is attached below

<em><u>Answer:</u></em>

<h3>The perimeter of the quadrilateral is 129 inches</h3>

<em><u>Solution:</u></em>

The complete figure of this question is attached below

Given that, a quadrilateral with,

Side lengths are:

4x^2 + 8x\ inches \\\\3x^2-5x+20\ inches \\\\7x + 30\ inches \\\\31\ inches

The values of the side lengths when x = 2 are

(4x^2+8x)=(4\times 2^2+8\times 2)=(4\times 4+16)=16+16=32\ inch\\\\(3x^2-5x+20)=(3\times 2^2-5\times 2+20)=(3\times 4-10+20)=12+10=22\ inch\\\\(7x+30)=(7\times 2+30)=14+30=44\ inch

Perimeter of a quadrilateral = Sum of its sides

Perimeter of given quadrilateral = 32 + 22 + 44 + 31 = 129 inches

Thus perimeter of the quadrilateral is 129 inches

5 0
3 years ago
Please help me thank you
Olenka [21]

Step-by-step explanation:

6 \sqrt{2}

this is the answer

4 0
3 years ago
Andrew has a balance of $6,000 on his credit card with an annual interest rate of 12%. To pay off the $6,000 in three years, And
amid [387]

Answer:

$1,174.44

Step-by-step explanation:

- Three year period will have 36 payments, then the total payment is $7,174.44

- In which $6,000 is the balance of credit card at beginning

- The total interest paid over the 03 years is $1,174.44 = $7,174.44 - $6,000

5 0
3 years ago
Other questions:
  • Draw a card from the deck and toss a coin dependent or independent ?
    14·1 answer
  • How many terms are in the expression 6x2-2x-14y+3x
    10·1 answer
  • Kevin recorded the effects of violent video games on antisocial behavior.
    15·2 answers
  • Find the value of y when x equals 20 -2x+4y=-4
    12·1 answer
  • P(x) = 8x² + 7x² + 2x + 4
    9·1 answer
  • The mean height of coastal redwood trees is known to be 200 feet. In order to test whether a community of coastal trees were gro
    11·1 answer
  • What are some Advantages &amp; Disadvantages of a Rectangular Prism?
    8·1 answer
  • Which of the following is h(x) = f(g(x))?
    14·1 answer
  • Which translation takes y = | x + 2 | - 1 to y = | x | + 2 ?
    11·1 answer
  • Help me please. i’ll give brainliest
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!