1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
10

A light bulb is designed by revolving the graph of:

Mathematics
1 answer:
nadya68 [22]3 years ago
5 0

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

You might be interested in
Classify each of the following products as rational or irrational
yan [13]

Classify each of the following products as rational or irrational ​

3÷5 * √4 = 3÷5 * 2 = 3*2÷5 = 6÷5 Rational ​can be written as a ratio of two integer numbers.

3÷5 * √2 = Irrational can't be written as a ratio of two integer numbers.​

​2÷3 * √7 = Irrational can't be written as a ratio of two integer numbers.

2÷3 * √3 = Irrational can't be written as a ratio of two integer numbers.​

2÷9 * √1 = 2÷9 * 1 = 2÷9 = Rational can be written as a ratio of two integer numbers.​

2÷5 * √9 = 2÷5 * 9 = 2*9÷5 = 18÷5 Rational can be written as a ratio of two integer numbers.​

Hope this helps!​

\textit{\textbf{Spymore}}​​

5 0
4 years ago
If there are x teams in a sports​ league, and all the teams play each other​ twice, a total of​ N(x) games are​ played, where ​N
Elena-2011 [213]

Answer:

It will cost $700 to play the entire​ schedule.

Step-by-step explanation:

Given : N(x)=x^2-x

To Find :  A softball league has 5 ​teams, each of which play the others twice. If the league pays ​$35 per​ game, how much will it cost to play the entire​ schedule?

Solution:

Equation for total no. of games when all the teams play each other​ twice is N(x)=x^2-x

Now we are given that A softball league has 5 ​teams, each of which play the others twice.

So, Substitute x = 5 in the given equation

N(x)=5^2-5

N(x)=20

So, The total no. of games = 20

Cost for 1 game = $35

So, cost for 20 games = 35 \times 20 = 700

Hence  it will cost $700 to play the entire​ schedule.

5 0
3 years ago
Helppppppppppppppppppppp ASAP
viva [34]

Answer:

Answer is (A.)

Step-by-step explanation:

8 0
4 years ago
Read 2 more answers
Solve the equation for the stated variable: A=1/2ap. Solve for p
dezoksy [38]
Hello,

<span>A=1/2ap
</span>
Solve for p:

Solution:

solve for p by simplifying both sides of the equation , then isolating the variable.

p=2A/a


Faith xoxo




8 0
3 years ago
The figure shows a circle within a square. Find the circumference of the circle let π = 3.14. <br> ​
Andru [333]

The side of the square = 16 in

When a circle is inscribed in a square, the length of each side of the square is equal to the diameter of the circle.

So, the diameter of the circle is equal to 16 in => radius = 8 in

Circumference = 2πr = 2π8 = 16π = 50.24

8 0
3 years ago
Other questions:
  • A student runs 100 meters in 11 seconds. What is the speed of the student?
    7·1 answer
  • What is the percent of decrease between 80 and 64
    11·1 answer
  • Simplify the expression 8+4a+6.2-9a
    15·2 answers
  • The prime factorization of 76 is _____.
    7·2 answers
  • F(x) = x3 + 5x2 - x - 5<br><br> What are the factors of f(x)?
    10·1 answer
  • You and your two friends are
    5·2 answers
  • What are the five ways we should examine characters to gain information about them?
    6·1 answer
  • Cos sec² a - cot²a=1 ​
    12·1 answer
  • Hi! i’ll give brainliest please help
    8·1 answer
  • ASAP! Please help with the picture below, I need to know how to solve it as well as the answer! Thanks!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!