1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
10

A light bulb is designed by revolving the graph of:

Mathematics
1 answer:
nadya68 [22]3 years ago
5 0

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

You might be interested in
Between what pair of numbers is the product of 289 and 7
inn [45]
The answer is the 989 is the answer
6 0
3 years ago
Find the 9th term of the geometric sequence 6, -24, 96,
beks73 [17]

Step-by-step explanation:

the process is show in the above picture.

5 0
3 years ago
WILL PICK BRAINIEST ANSWER AND u have to be my friend what is 5 1/3 + 4 2/5
Jobisdone [24]
The answer is 146/15.
8 0
3 years ago
Read 2 more answers
3. 11x-7y=-14. X-2y=-4
pshichka [43]
11x -7y= -14 (1)
x -2y= -4 (2)

Multiply (2) by 11, we have:
11x -22y= -44 (3)

Take (1)-(3), we have:
(11x-11x)+ (-7y-(-22y))= -14-(-44)
⇒ -7y+22y= -14+44
⇒ 15y= 30
⇒ y= 30/15
⇒ y= 2

x= -4+ 2y= -4+ 2*2= 0

The final answer is x=0, y=2~
4 0
3 years ago
Read 2 more answers
A block of ice weighing 20 lb is taken from the freezer where it was stored at -15"F. How many Btu of heat will be required to c
timofeeve [1]

Answer:

6700.6 BTU

Step-by-step explanation:

First you have to warm the block from -15° F to 32°F, the heat to needed to do this is:

Q_{1}=mc\Delta T=20lb*0.49\frac{BTU}{lbF} *(32F-(-15F))=460.6BTU

After you need to melt the ice. The heat you need is:

Q_{2}=mL=20lb*144\frac{BTU}{lb}=2880BTU

Finally, you need to heat the water from 32° F to 200 ° F, and the heat for this is:

Q_{3}=mc\Delta T=20lb*1\frac{BTU}{lbF} *(200F-32F)=3360BTU

Q=Q_{1}+Q_{2}+Q_{3}=460.6BTU+2880BTU+3360BTU=6700.6BTUTo have the total heat you used you have to suQ_{1},Q_{2} and Q_{3}

6 0
3 years ago
Other questions:
  • Emma works in a department store selling
    6·1 answer
  • The price of an item yesterday was
    9·1 answer
  • Y+3=-3(×+2) <br> Point slope form equation when graphed
    14·1 answer
  • Hymie Caddiddle is a truck driver who earns $56,000 a year driving cross-country. He is single with no dependents. He pays $2,43
    7·2 answers
  • An amusement park charges $8 admission and $2 a ride show a table please
    15·1 answer
  • At the baseball game, Gayle bought 3 candy bars for $.70 each. Glenn bought a hot dog for $2.25. If Glenn used a $5 bill to pay
    14·2 answers
  • Solve the following system of equations
    6·1 answer
  • This scatter diagram shows the marks scored in a class test in English and Science
    7·1 answer
  • i need this answer quick pleasePeter bought 10 basketball, 20 baseballs, and 11 football at the sports store. The basketball cos
    11·1 answer
  • * Let S = Span {(2,-1, 1), (3, 1, 1), (1, 2, 0)}. (i) Calculate the dimension of S.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!