1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
10

A light bulb is designed by revolving the graph of:

Mathematics
1 answer:
nadya68 [22]3 years ago
5 0

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

You might be interested in
Ethan has 3 pounds of mixed nuts. How many ounces of mixed nuts does Ethan have?
almond37 [142]
There are 16 ounces in a pound so all you have to do is multiply 16 and 3.
16*3=48
ANSWER= 48 ounces
5 0
3 years ago
Ryo accidentally ordered 240% as many eggs as his restaurant needed. What fraction of the number of eggs his restaurant needs di
Anarel [89]

Answer:

Ryo ordered \frac{12}{5} of the amount of eggs his restaurant needed

Step-by-step explanation:

Let's call z the number of eggs the restaurant needs

Ryo ordered 240% of the eggs he needed. Then Ryo ordered:

\frac{240}{100}z.

This fraction can be simplified by dividing by 10 in the numerator and denominator.

Then it is:

\frac{24}{10}

It can be further simplified by dividing by 2 in the numerator and denominator:

\frac{12}{5}z

Ryo ordered \frac{12}{5} of the amount of eggs his restaurant needed

6 0
3 years ago
The equation A = lw is an example of an​
Mrac [35]

Answer:

A=lw is a formula for the area. L is length, W is width.

6 0
3 years ago
What is the vertex of a parabola having the equation y = –2(x – 5)2 + 7? Which direction does the parabola open?
Vika [28.1K]

y = -2(x-5)^2 + 7

That's vertex form for a parabola y=a(x-p)^2+q and we read off vertex (p,q) as

Answer: Vertex (5,7)

The negative <em>a</em> tells us this is a downward opening parabola (upside down from the usual y=x^2. I remember CUP - Concave Up Positive; here <em>a </em>is negative so not a cup, instead concave <em>down.</em> The same rule applies to second derivatives in calculus so memorize it now and use it later.

Answer: downward

7 0
3 years ago
Subtract 6 from me. Then multiply by 2. If you subtract 40 and then divide by 4, you get 8. What number am I?
aliina [53]

Answer:

42

Step-by-step explanation:

Let the number be "x"

We translate the word equation to algebraic equation.

First,

subtract 6 from me, so we have:

x - 6

Now,

Multiply by 2, so we have:

2(x-6)

Now,

Subtract 40, then divide by 4:

\frac{2(x-6)-40}{4}

Now, you get "8", so equate this to 8, we get:

\frac{2(x-6)-40}{4}=8

We now solve using algebra:

\frac{2(x-6)-40}{4}=8\\2(x-6)-40=4*8\\2(x-6)-40=32\\2x-12-40=32\\2x-52=32\\2x=32+52\\2x=84\\x=42

The number is 42

7 0
3 years ago
Other questions:
  • What is the slope of a horizontal line that crosses the y-axis at (0,8)?
    11·1 answer
  • What is the degree of the polynomial below?<br> 7x6 +6x2 + 4x + 2
    13·1 answer
  • Help me please I’m stuck /:
    13·1 answer
  • Find the slope of the line passing through the points 3, 4 and 8 , -3 .
    14·1 answer
  • Find the measure of cd
    8·1 answer
  • Please answer correctly !!!!! Will mark Brianliest !!!!!!!!!!!!!!
    7·1 answer
  • Please help me 7th grade math math
    10·1 answer
  • Pls help me pass calculus :’)
    5·1 answer
  • in the ratey the cat animation there is a guy who earns $10 per lawn complete the table below that represents money earned per l
    5·1 answer
  • Board sum (-4)+1=x+(-4)
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!