1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
10

A light bulb is designed by revolving the graph of:

Mathematics
1 answer:
nadya68 [22]3 years ago
5 0

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

You might be interested in
An adult blue whale can eat 4.0 x 10' krill
kotykmax [81]
Ratio=4.0 *10⁷ Krill / day
amount of krill=ratio * days
amount of krill=(4.0*10⁷ Krill /day)(3.65*10² days)=1.46*10¹⁰ krill

Answer: 1.46*10¹⁰ krill
3 0
3 years ago
Find the area of the figure. Round to the nearest tenth if necessary. Use 3.14 for .
Anna [14]

Answer:

22\ units^2

Step-by-step explanation:

we know that

The area of the figure is equal to the area of a triangle plus the area of a parallelogram

<em>Find the area of triangle KLM</em>

A=\frac{1}{2} (b)(h)

we have

b=7-3=4\ units --> difference of the x-coordinates points M and K

h=6-3=3\ units --> difference of the y-coordinates points L and K

substitute

A_1=\frac{1}{2} (4)(3)=6\ units^2

<em>Find the area of parallelogram JKMN</em>

A=(B)(H)

B=6-2=4\ units --> difference of the x-coordinates points N and J

H=3-(-1)=4\ units --> difference of the y-coordinates points K and J

substitute

A_2=(4)(4)=16\ units^2

The area of the figure is equal to

A=A_1+A_2

A=6+16=22\ units^2

5 0
4 years ago
What is the common ratio between successive terms in the sequence? 2, –4, 8, –16, 32, –64, ...
sergeinik [125]
2×-2=-4
-4 × -2 = 8
8 × -2 =-16
-16×-2 =32
32 ×-2 = -64.
therefore the answer is -2.
8 0
3 years ago
Read 2 more answers
How to do this in math
igomit [66]
Multiply both sides by 5
3 0
3 years ago
What is the area of the triangle shown below?<br> 14
Sveta_85 [38]

Answer:

Excuse me but they is nothing shown below!

Step-by-step explanation: Again not trying to be rude but there is nothing shown below! thank you for your time! <3

5 0
3 years ago
Other questions:
  • Simplify 6√1,000m^3n^12
    11·2 answers
  • - If Hannah purchased a 5-day parking
    14·1 answer
  • If you add 1/3 of a number to itself you get 1348 what is the number
    11·1 answer
  • How does doubling the side length of a rectangle affect its area
    11·1 answer
  • 3y-15x=y<br><br> What is the slope intercept form
    7·2 answers
  • Question is in the picture. please help this is for finals.​
    14·1 answer
  • Which of the following expressions is equal to -3x^2-12?
    11·1 answer
  • Expression: 3x2t<br> If the value is 96 what is t?
    15·1 answer
  • 26:<br> = α : 8<br> 18:x= x:8
    8·1 answer
  • Mariana had both chocolate cake and coconut cake at her birthday party. 40 people picked chocolate cake and 10 people picked coc
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!