Answer: 120[4(x^6 + x^3 + x^4 + x) +7(x^7 + x^4 + x^5 + x^2)]
Step-by-step explanation:
=24x(x^2 + 1)4(x^3 + 1)5 + 42x^2(x^2 + 1)5(x^3 + 1)4
Remove the brackets first
=[(24x^3 +24x)(4x^3 + 4)]5 + [(42x^4 +42x^2)(5x^3 + 5)4]
=[(96x^6 + 96x^3 +96x^4 + 96x)5] + [(210x^7 + 210x^4 + 210x^5 + 210x^2)4]
=(480x^6 + 480x^3 + 480x^4 + 480x) + (840x^7 + 840x^4 + 840x^5 + 840x^2)
Then the common:
=[480(x^6 + x^3 + x^4 + x) + 840(x^7 + x^4 + x^5 + x^2)]
=120[4(x^6 + x^3 + x^4 + x) +7(x^7 + x^4 + x^5 + x^2)]
Answer:
2
Step-by-step explanation:
16f - 24 = 4f
12f = 24
f = 2
Answer:
g o f = 
Step-by-step explanation:
Given


Required:
Find g o f
This is calculated as:


So:


![g(f(x)) = 2[ 16x^2 + 16x + 4)] - 4](https://tex.z-dn.net/?f=g%28f%28x%29%29%20%3D%202%5B%2016x%5E2%20%2B%2016x%20%2B%204%29%5D%20-%204)


12? im not sure
i think u need to multiply 6 and 2 to get your answer.
Answer:
Step-by-step explanation:
