Answer:
a(n) = a(1) -3(n-1)
Step-by-step explanation:
Answer:
a) The value of absolute minimum value = - 0.3536
b) which is attained at
Step-by-step explanation:
<u>Step(i)</u>:-
Given function
...(i)
Differentiating equation (i) with respective to 'x'
...(ii)

Equating Zero






<u><em>Step(ii):</em></u>-
Again Differentiating equation (ii) with respective to 'x'
put


The absolute minimum value at 
<u><em>Step(iii):</em></u>-
The value of absolute minimum value


on calculation we get
The value of absolute minimum value = - 0.3536
<u><em>Final answer</em></u>:-
a) The value of absolute minimum value = - 0.3536
b) which is attained at
Answer:
7.6
Step-by-step explanation:
m<DBA is 68 degrees
Answer:Oof your stuff looks hard!
Step-by-step explanation: