Total number of trees n = 4 + 3 + 3 = 10. Count the number of each different trees. n1=4, n2=3, n3=3. Number of ways the landscaper plant the trees in a row is = 10 ! / ( 4! * 3! * 3! ) = 3628800 / ( 24 * 6 * 6 ) = 3628800 / 864 = 4200 ways.
Therefore, the trees can be planted 4200 ways
Answer:
6.75
Step-by-step explanation:
Find the mean of the set {2,5,5,6,8,8,9,11} .
There are 8 numbers in the set. Add them all, and then divide by 8 .
2 + 5 + 5 + 6 + 8 + 8 + 9 + 118=548=6.75
Answer:
13 1/2 hours
Step-by-step explanation:
4/6=9/x then find the rate and solve
Answer:


Step-by-step explanation:
1. 



○○•○○
2. 



Answer:
see below the first three problems
Step-by-step explanation:
f(g(-2))
First, find g(-2) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(-2) = -2(-2) + 1
g(-2) = 5
f(x) = 5x
f(5) = 5(5)
f(5) = 25
f(g(-2)) = 25
g(h(3))
First, find h(3) using function h(x). Then use that value as input for function g(x).
h(x) = x^2 + 6x + 8
h(3) = 3^2 + 6(3) + 8 = 9 + 18 + 8
h(3) = 35
g(x) = -2x + 1
g(35) = -2(35) + 1 = -70 + 1
g(35) = -69
g(h(3)) = -69
f(g(3a))
First, find g(3a) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(3a) = -2(3a) + 1
g(3a) = -6a + 1
f(x) = 5x
f(-6a + 1) = 5(-6a + 1)
f(-6a + 1) = -30a + 5
f(g(3a)) = -30a + 5