Both of the ones on the right represent functions
Answer:
13.5 meters
Step-by-step explanation:
lets take width as w
l=24
and length is 3 meters less than twice the width
so
l+3=2w
24+3=2w
27=2w
divide both sides by "2"
27/2=13.5
13.5=w
B=7
3(b-4)+5b=44
3b-12+5b=44
8b=44+12
8b=56
b=7
Answer:
2(d-vt)=-at^2
a=2(d-vt)/t^2
at^2=2(d-vt)
Step-by-step explanation:
Arrange the equations in the correct sequence to rewrite the formula for displacement, d = vt—1/2at^2 to find a. In the formula, d is
displacement, v is final velocity, a is acceleration, and t is time.
Given the formula for calculating the displacement of a body as shown below;
d=vt - 1/2at^2
Where,
d = displacement
v = final velocity
a = acceleration
t = time
To make acceleration(a), the subject of the formula
Subtract vt from both sides of the equation
d=vt - 1/2at^2
d - vt=vt - vt - 1/2at^2
d - vt= -1/2at^2
2(d - vt) = -at^2
Divide both sides by t^2
2(d - vt) / t^2 = -at^2 / t^2
2(d - vt) / t^2 = -a
a= -2(d - vt) / t^2
a=2(vt - d) / t^2
2(vt-d)=at^2