Answer:
I'm going to say answer B for the first question. I'm not sure for the second question.
Step-by-step explanation:
Angles are congruent when they are the same size.
<h3>
Answer: 12 inches</h3>
=============================================================
Explanation:
Notice the double tickmarks on segments WZ and ZY. This tells us the two segments are the same length. Let's say they are m units long, where m is a placeholder for a positive number.
That would mean m+m = 2m represents the length of segment WY, but that's equal to 10 as the diagram shows. We have 2m = 10 lead to m = 5 after dividing both sides by 2.
We've shown that WZ and ZY are 5 units long each. In short, we just cut that length of 10 in half.
-----------------------------------
Let's focus on triangle XYZ. This is a right triangle with legs XZ = unknown and ZY = 5. The hypotenuse is XY = 13.
We'll use the pythagorean theorem to find XZ
a^2 + b^2 = c^2
(XZ)^2 + (ZY)^2 = (XY)^2
(XZ)^2 + (5)^2 = (13)^2
(XZ)^2 + 25 = 169
(XZ)^2 = 169-25
(XZ)^2 = 144
XZ = sqrt(144)
XZ = 12
Segment XZ is 12 inches long.
Answer:
Please ask a question so the community can help answer it and it has to be a school subject not a real life situation.
wheres the picture
Step-by-step explanation:
Answer:
By AA
ΔWXY ~ΔWVZ
Step-by-step explanation:
Here WXY is an isosceles triangle with legs WX & WY
So WX = WY
Hence ∠X = ∠Y
So ∠2= ∠3.
Now by angle sum property
∠1 + ∠2+∠3 = 180°
∠1+∠2+∠2=180°
2∠2 = 180° - ∠1 .......(1)
In triangle WVZ
WV = WZ
So ∠V = ∠Z
∠4 = ∠5
Once again by angle sum property
∠1 + ∠4 + ∠5=180°
∠1 + ∠4 + ∠4 = 180°
2∠4 = 180° - ∠1 ...(2)
From (1) & (2)
2∠2 = 2∠4
∠2=∠4
Now ∠W is common to both triangles
Hence by AA
ΔWXY ~ΔWVZ