Hi there!

Find the total area by breaking the figure into two rectangles, one trapezoid, and one triangle.
Rectangles:
A = l × w
A = 2.75 × 4 = 11 in²
Solve for the other rectangle's length by subtracting from the total:
12 - 2 - 3 - 4 = 3
A = 3 × 3 = 9 in²
Total rectangle area: 11 + 9 = 20 in²
Trapezoid:
A = 1/2(b1 + b2)h
A = 1/2(4.25 + 2.75)3 = 21/2 = 10.5 in²
Triangle:
A = 1/2(bh)
A = 1/2(2.5 · 2) = 2.5 in²
Add up all of the areas:
20 + 10.5 + 2.5 = 33 in²
Answer:
I think this is the correct answer
If the 1 were underlined it would be 10,000
If the 6 were underlined it would be 6,000
If the 4 were underlined it would be 400
If the 0 were underlined it would be 0
If the 3 were underlined it would be 3
The expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Given an integral
.
We are required to express the integral as a limit of Riemann sums.
An integral basically assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinite data.
A Riemann sum is basically a certain kind of approximation of an integral by a finite sum.
Using Riemann sums, we have :
=
∑f(a+iΔx)Δx ,here Δx=(b-a)/n
=f(x)=
⇒Δx=(5-1)/n=4/n
f(a+iΔx)=f(1+4i/n)
f(1+4i/n)=![[n^{2}(n+4i)]/2n^{3}+(n+4i)^{3}](https://tex.z-dn.net/?f=%5Bn%5E%7B2%7D%28n%2B4i%29%5D%2F2n%5E%7B3%7D%2B%28n%2B4i%29%5E%7B3%7D)
∑f(a+iΔx)Δx=
∑
=4
∑
Hence the expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Learn more about integral at brainly.com/question/27419605
#SPJ4
Answer:
C
10% = (10÷100=1÷10)=2÷20=.10