Answer:
that's the answer man ur welcome btw
Answer:
1.8 cycles
Step-by-step explanation:
The average number of clock cycles per instruction is given by the sum of the product of each possible number of cycles by its likelihood.
1 cycle: 50%
2 cycles : 25%
3 cycles : 20%
4 cycles : 5%
The average number of clock cycles per instruction is 1.8.
<span>The correct answer is 216x</span>⁶<span>y</span>⁵<span>.
Explanation:
The first thing we do is raise the last monomial to the third power.
(4xy)(2x</span>²<span>y)(3xy)</span>³
<span>=(4xy)(2x</span>²<span>y)(3</span>³<span>x</span>³<span>y</span>³<span>)
=4xy(2x</span>²<span>y)(27x</span>³<span>y</span>³<span>).
Now we can multiply the first two monomials. When we multiply powers with the same base, we add the exponents:
8x</span>³<span>y</span>²<span>(27x</span>³<span>y</span>³<span>).
We multiply these last two monomials, again adding the exponents:
216x</span>⁶<span>y</span>⁵<span>.</span>
Answer:
effective green time = 35 seconds
Step-by-step explanation:
given data
cycle length = 60 seconds
effective red time = 25 seconds
solution
we get here effective green time that is express as
effective green time = cycle length - effective red time ...........................1
put here value and we will get
effective green time = 60 seconds - 25 seconds
effective green time = 35 seconds