There are two possible outcomes of this experiment either success p or failure q. It has a given number of trials and all trials are independent therefore it is<u><em> binomial probability distribution.</em></u>
1- 5 ways
2- 5/16
3- 1/16
4- 1/16
In the question given above n= 5 p =1/2 q= 1/2 r is the given point.
- <u>Part 1:</u>
The number of ways in which different people get off the bus can be calculated using combinations since the order is not essential. Therefore
nCr= 5C4= 5 ways
<u>2. Part 2:</u>
The probability that all four people get off the bus on the first stop is given by :
P (x= 1)= 5C1 (1/2)^0(1/2)^4= 5(1/2)^4= 5/16
<u>3. Part 3:-</u> The probability that all four people get off the bus on the same stop.
P (x= x)= 5C5 (1/2)^0(1/2)^4= 1(1/2)^4= 1/16
<u>4. Part 4-</u> The probability that <u><em>exactly three of the four</em></u> people get off the bus on the same stop.
P (x= x)= 5C5 (1/2)^3(1/2)^1= 1(1/2)^4= 1/16
For binomial distribution click
brainly.com/question/15246027
brainly.com/question/13542338
Answer: 38° and 52°
Steps:
x + 38° = 90°
x = 90° - 38°
x = 52°
90° - 52° = 38°
Answer:
There are 15 letters, but if the two A's must always be together, that's the same as if they're just one letter, so our "base count" is 14! ; note that this way of counting means that we also don't need to worry about compensating for "double counting" identical permutations due to transposition of those A's, because we don't "count" both transpositions. However, that counting does "double count" equivalent permutations due to having two O's, two N's, and two T's, so we do need to compensate for that. Therefore the final answer is 14!/(23)=10,897,286,400