I believe the number is 406,152
Answer:
Step-by-step explanation:
Favorable outcome. To possible outcome
Answer:
There is no following, we have data of all the people
Step-by-step explanation:
There where Sixty-five salespersons asked and the if we add all the persons that where asked it is the same. So there is no following
Fourteen people answered that they generally sell two cars; 14
nineteen generally sell three cars; 19
twelve generally sell four cars; 12
nine generally sell five cars; 9
eleven generally sell six cars 11
Adding 14+19+12+9+11=65 persons
Answer:
The solution to this question can be defined as follows:
Step-by-step explanation:
Please find the complete question in the attached file.
![A = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%5Cend%7Barray%7D%5Cright%5D)
now for given values:
![\left[\begin{array}{ccc} \frac{3}{4} - \lambda & \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2} - \lambda & 0\\ -\frac{1}{4}& -\frac{1}{4} & 0 -\lambda \end{array}\right]=0 \\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%20-%5Clambda%20%5Cend%7Barray%7D%5Cright%5D%3D0%20%5C%5C%5C%5C)
![\to (\frac{3}{4} - \lambda ) [-\lambda (\frac{1}{2} - \lambda ) -0] - 0 - \frac{1}{4}[0- \frac{1}{2} (\frac{1}{2} - \lambda )] =0 \\\\\to (\frac{3}{4} - \lambda ) [(\frac{\lambda}{2} + \lambda^2 )] - \frac{1}{4}[\frac{\lambda}{2} - \frac{1}{4}] =0 \\\\\to (\frac{3}{8}\lambda + \frac{3}{4} \lambda^2 - \frac{\lambda^2}{2} - \lambda^3 - \frac{\lambda}{8} + \frac{1}{16}=0 \\\\\to (\lambda - \frac{1}{2}) (\lambda -\frac{1}{4}) (\lambda - \frac{1}{2}) =0\\\\](https://tex.z-dn.net/?f=%5Cto%20%20%28%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%29%20%5B-%5Clambda%20%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%29%20-0%5D%20-%200%20-%20%5Cfrac%7B1%7D%7B4%7D%5B0-%20%5Cfrac%7B1%7D%7B2%7D%20%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%29%5D%20%3D0%20%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%29%20%5B%28%5Cfrac%7B%5Clambda%7D%7B2%7D%20%2B%20%5Clambda%5E2%20%29%5D%20-%20%5Cfrac%7B1%7D%7B4%7D%5B%5Cfrac%7B%5Clambda%7D%7B2%7D%20-%20%20%5Cfrac%7B1%7D%7B4%7D%5D%20%3D0%20%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B3%7D%7B8%7D%5Clambda%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Clambda%5E2%20-%20%5Cfrac%7B%5Clambda%5E2%7D%7B2%7D%20-%20%5Clambda%5E3%20-%20%5Cfrac%7B%5Clambda%7D%7B8%7D%20%2B%20%5Cfrac%7B1%7D%7B16%7D%3D0%20%5C%5C%5C%5C%5Cto%20%28%5Clambda%20-%20%5Cfrac%7B1%7D%7B2%7D%29%20%28%5Clambda%20-%5Cfrac%7B1%7D%7B4%7D%29%20%28%5Clambda%20-%20%5Cfrac%7B1%7D%7B2%7D%29%20%3D0%5C%5C%5C%5C)


In point b:
Its
spectral radius is less than 1 hence matrix is convergent.
In point c:
![\to c^{(k+1)} = A x^{k}+C \\\\\to x(0) = \left(\begin{array}{c}3&1&2\end{array}\right) , c = \left(\begin{array}{c}2&2&4\end{array}\right)\\\\ \to x^{(k+1)} = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right] x^k + \left[\begin{array}{c}2&2&4\end{array}\right] \\\\](https://tex.z-dn.net/?f=%5Cto%20c%5E%7B%28k%2B1%29%7D%20%3D%20A%20x%5E%7Bk%7D%2BC%20%5C%5C%5C%5C%5Cto%20x%280%29%20%3D%20%20%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D3%261%262%5Cend%7Barray%7D%5Cright%29%20%20%2C%20c%20%3D%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D2%262%264%5Cend%7Barray%7D%5Cright%29%5C%5C%5C%5C%20%20%5Cto%20x%5E%7B%28k%2B1%29%7D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%5Cend%7Barray%7D%5Cright%5D%20x%5Ek%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%262%264%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%5C%5C)
after solving the value the answer is
:
![\lim_{k \to \infty} x^k=o = \left[\begin{array}{c}0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Clim_%7Bk%20%5Cto%20%5Cinfty%7D%20x%5Ek%3Do%20%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%260%260%5Cend%7Barray%7D%5Cright%5D)
To simplify this, we first need to distribute the 2 into the parenthesis.
= 2 * x + 2 * 3 - 4
Now, we can simplify:
= 2x + 6 - 4
= 2x + 2
Hope this helps!