<span>In geometry, planes are two-dimensional spaces which extend infinitely. If they do not intersect at all, they are considered parallel. However, if they do intersect, that intersection come in the form of an infinitely-extending collection of 1-dimensional points, which collectively form a line. As such, the answer is "line".</span>
Answer:
G
Step-by-step explanation:
9+(-3) = 6
Answer:
1. 
- Degree: 2
- Number of terms: 3
2. 
- Degree: 3
- Number of terms: 2
3. 
- Degree: 4
- Number of terms: 2
Step-by-step explanation:
For this exercise you need to remember the multiplication of signs:

1. Given:

Apply the Distributive property:

Add the like terms:

You can idenfity that:
- Degree: 2
- Number of terms: 3
2. Given:

Add the like terms:

You can idenfity that:
- Degree: 3
- Number of terms: 2
3. Given:

Apply Distributive property:

Add the like terms:

You can idenfity that:
- Degree: 4
- Number of terms: 2
Answer:
Part 1) There are infinity locations for the point B
Part 2) see the explanation
Step-by-step explanation:
Part 1) How many possible locations are there for point B?
we know that
The equation of a line in point slope form is equal to

where


substitute

Convert to slope intercept form




Point B can be any point ( different from point A) that satisfies the linear equation
therefore
There are infinity locations for the point B
Part 2) Describes a method to location the point
To locate the point, one of the two coordinates must be known. The known coordinate is placed into the linear equation and the equation is solved to find the value of the missing coordinate
Example
Suppose that the x-coordinate of point B is 4
For x=4
substitute in the linear equation

so
The coordinates of point B is (4,10.5)
Answer:
0.40
Step-by-step explanation:
to find out the probability that at least one of a pair of fair dice lands of 5, given that the sum of the dice is 8
Let A = sum of dice is 8
B = one lands in 5
P(B/A) = P(AB)/P(A) by conditional probability
P(AB) = sum is 8 and one is 5
So (5,3) or (3,5)
P(A) = sum is 8.
i.e. (2,6) (2,6) (3,5) (5,3) (4,4)
Required probability
= n(AB)/n(A)
=