1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
3 years ago
11

Please help. the packet is due tonight

Mathematics
1 answer:
Zolol [24]3 years ago
8 0

Answer:

[C]  \displaystyle \frac{-3}{250}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Functions
  • Function Notation
  • Conjugations

<u>Calculus</u>

  • Limits
  • Limit Rule [Variable Direct Substitution]:                                                     \displaystyle \lim_{x \to c} x = c
  • Limit Property [Multiplied Constant]:                                                           \displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)
  • Derivatives
  • Definition of a Derivative:                                                                             \displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle g(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

\displaystyle f(x) = \frac{3}{\sqrt{x - 4}}

\displaystyle g(29)

<u>Step 2: Differentiate</u>

  1. Substitute in function [Function g(x)]:                                                           \displaystyle g(x) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{x + h - 4}} - \frac{3}{\sqrt{x - 4}}}{h}
  2. Substitute in <em>x</em> [Function g(x)]:                                                                       \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{29 + h - 4}} - \frac{3}{\sqrt{29 - 4}}}{h}
  3. Simplify:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{25 + h}} - \frac{3}{5}}{h}
  4. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15}{5\sqrt{25 + h}} - \frac{3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  5. [Subtraction] Combine like terms:                                                               \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15 - 3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  6. Factor:                                                                                                           \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3(5 - \sqrt{25 + h})}{5\sqrt{25 + h}}}{h}
  7. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{3(5 - \sqrt{25 + h})}{5h\sqrt{25 + h}}
  8. Rewrite [Limit Property - Multiplied Constant]:                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}}
  9. Root Conjugation:                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}} \cdot \frac{5 + \sqrt{25 + h}}{5 + \sqrt{25 + h}}
  10. Multiply:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{5h\sqrt{25 + h} + h^2 + 25h}
  11. Factor:                                                                                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{h(5\sqrt{25 + h} + h + 25)}
  12. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + h} + h + 25}
  13. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + 0} + 0 + 25}
  14. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \cdot \frac{-1}{50}
  15. Multiply:                                                                                                         \displaystyle g(29) = \frac{-3}{250}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Find the equation of the line with Slope = -4 and passing through (-1,8). Write your equation in the form
Thepotemich [5.8K]

Answer:

y= -4x+4

Step-by-step explanation:

y=mx+b

where x=-1, y=8, and m=-4

8=(-4)(-1)+b

8=4+b

4=b

Thus, y= -4x+4

8 0
3 years ago
Find the value of X?
Molodets [167]

Answer:

x = 58

Step-by-step explanation:

The exterior angle is equal to the sum of the opposite interior angles

90  = 32+x

Subtract 32 from each side

90-32 = x

58 =x

5 0
4 years ago
(02.05 MC) A dance school has 63 ballet dancers. If 42% of the total number of dancers in the school are ballet dancers, what is
Elena L [17]

Alright, lets get started.

Suppose total number of dancers in school = x

We have given in question, 42 % of total dancers are ballet dancers.

So, we could find number of ballet dancers by finding 42 % of total dancers.

Number of ballet dancers = x * 42 %

Number of ballet dancers = x * 42/100 = 0.42 x

As per given in question, there are 63 ballet dancers in school.

Which means 0.42 x = 63

Dividing 0.42 from both sides

0.42 x / 0.42 = 63 / 0.42

x = 150

Hence number of total dancers in school = 150 : Answer

Hope it will help :)

4 0
3 years ago
Am I doing this right someone plz help me with this what’s the answer and the work for this
Gre4nikov [31]

26 feet divided by 15/2 inches  

26 * 12 = 312

312 * 2/15  

624/15

41 9/15

41  3/5


she can make 41 bracelets

4 0
3 years ago
Solve the equation. 27x - 6 = 9x - 1
Evgesh-ka [11]
27x-6=9x-1
27x-9x =-1+6
18x = 5
x = 5/18
5 0
4 years ago
Read 2 more answers
Other questions:
  • A park in a subdivision has a triangular shape. Two adjacent sides of the park are 533 feet and 525 feet. The angle between the
    12·2 answers
  • Last year,a chain of electronics stores had a loss of $45 million. This year the loss is $12million more than last year's loss.
    9·1 answer
  • How to find if two lines are perpendicular?
    6·1 answer
  • Is 7.7 greater less than or equal to 7.5
    14·2 answers
  • 12
    9·1 answer
  • In a survey of consumers aged 12 and​ older, respondents were asked how many cell phones were in use by the household.​ (No two
    7·1 answer
  • 45 POINTS PLEASE HELP!
    15·2 answers
  • Identify the greatest common factor. 20x^5 - 8x^4 +12x^2
    15·1 answer
  • Gabriel invested $77,000 in an account paying an interest rate of 3%
    9·1 answer
  • Schaumburg 7th Grade Class has a Student Group for Math each group member must pay $10 each year in membership dues. The number
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!