1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
3 years ago
11

Please help. the packet is due tonight

Mathematics
1 answer:
Zolol [24]3 years ago
8 0

Answer:

[C]  \displaystyle \frac{-3}{250}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Functions
  • Function Notation
  • Conjugations

<u>Calculus</u>

  • Limits
  • Limit Rule [Variable Direct Substitution]:                                                     \displaystyle \lim_{x \to c} x = c
  • Limit Property [Multiplied Constant]:                                                           \displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)
  • Derivatives
  • Definition of a Derivative:                                                                             \displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle g(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

\displaystyle f(x) = \frac{3}{\sqrt{x - 4}}

\displaystyle g(29)

<u>Step 2: Differentiate</u>

  1. Substitute in function [Function g(x)]:                                                           \displaystyle g(x) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{x + h - 4}} - \frac{3}{\sqrt{x - 4}}}{h}
  2. Substitute in <em>x</em> [Function g(x)]:                                                                       \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{29 + h - 4}} - \frac{3}{\sqrt{29 - 4}}}{h}
  3. Simplify:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{25 + h}} - \frac{3}{5}}{h}
  4. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15}{5\sqrt{25 + h}} - \frac{3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  5. [Subtraction] Combine like terms:                                                               \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15 - 3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  6. Factor:                                                                                                           \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3(5 - \sqrt{25 + h})}{5\sqrt{25 + h}}}{h}
  7. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{3(5 - \sqrt{25 + h})}{5h\sqrt{25 + h}}
  8. Rewrite [Limit Property - Multiplied Constant]:                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}}
  9. Root Conjugation:                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}} \cdot \frac{5 + \sqrt{25 + h}}{5 + \sqrt{25 + h}}
  10. Multiply:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{5h\sqrt{25 + h} + h^2 + 25h}
  11. Factor:                                                                                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{h(5\sqrt{25 + h} + h + 25)}
  12. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + h} + h + 25}
  13. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + 0} + 0 + 25}
  14. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \cdot \frac{-1}{50}
  15. Multiply:                                                                                                         \displaystyle g(29) = \frac{-3}{250}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
The director of an animal shelter need to raise more than $50,000 during a fundraiser. Write an inequality that represents the a
mr_godi [17]

Answer:

m > 50,000

This means the money, m, will be greater than 50,000

5 0
3 years ago
43,000 rounded to the nearest thousand
fgiga [73]
It's already rounded
4 0
4 years ago
Read 2 more answers
What is 0.875 simplest form
babunello [35]

Answer:

7/8

Step-by-step explanation:

0.875 = 875/1000

875/1000            Divide numerator and denominator by 125

7/8

5 0
4 years ago
Read 2 more answers
G(x) = -10x – 8<br> a function
wlad13 [49]

Answer:

yes that is a function and not an equation

7 0
3 years ago
2b^2 +32b + 128 <br> Pls answer this
KengaRu [80]

Answer:

{2b}^{2}  + 32b + 128

Factor and get

x =  - 8

8 0
3 years ago
Read 2 more answers
Other questions:
  • Can you please help me​
    11·1 answer
  • A great white shark can swim 50 feet below sea level.which best represents the oppositebof the depth the great white shark can s
    12·2 answers
  • Hector buys a used car with an odometer reading of 31,250 miles. After the first month, the mileage shows an increase of 5%. Aft
    5·1 answer
  • Find all the real fourth roots of 6561.select the correct choice below​ and, if​ necessary, fill in the answer box to complete y
    15·1 answer
  • Solve for x: x/2+1=5
    10·2 answers
  • Text me on Insta at fatednightz I'll ask the question there​
    10·2 answers
  • ILL MARK U BRAINLIEST!!!!
    8·2 answers
  • Find the length of x. Assume that lines which appear to be tangent to the circle are tangent.
    11·1 answer
  • Consider the ratio of boys to girls of 4:5.
    13·1 answer
  • Penny Pavement and Cool Concrete are two companies that you have gotten estimates from to pave your driveway. Your driveway is a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!