Answer:
<em>Choice B. 16 feet.</em>
<em>The height of the tree is 16 ft</em>
Step-by-step explanation:
<u>Similar Triangles</u>
Similar triangles have their corresponding side lengths proportional by a fixed scale factor.
We are given the drawings of a tree and a wall and it's assumed both triangles are similar. We need to find the scale factor and find the height of the tree.
Comparing the corresponding distances from the viewer to the base of the tree and the base of the wall, we can calculate the scale factor as 24/6=4.
Applying the same factor to the height of the model, we get the height of the tree is 4*4 = 16 ft.
Choice B. 16 feet
The height of the tree is 16 ft
1/2 = 0.5
12 & 1/2 = 12 + 1/2 = 12 + 0.5 = 12.5
4 & 1/2 = 4 + 1/2 = 4 + 0.5 = 4.5
Refer to the diagram below. Note how I divided the figure into two rectangles.
The larger red rectangle is 12.5 feet by 10 feet. It has area 12.5*10 = 125 square feet.
The smaller blue rectangle has dimensions 4.5 feet by 5 feet (the 5 is from 15-10 = 5), so it has area 4.5*5 = 22.5 square feet
Now add up those individual areas to get the total area
125+22.5 = 147.5
Then convert that to a mixed number
147.5 = 147 + 0.5 = 147 + 1/2 = 147 & 1/2
<h3>The correct area is 147 & 1/2 feet</h3>
Answer:
4
Step-by-step explanation:
444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444
Answer:
B
Step-by-step explanation:
<u>To find the answer, you have to </u><u>multiply each term of the first parenthesis' expression with each term in the next parenthesis' expression.</u><u> Then </u><u>combine like terms</u><u>.</u> So we have:

Answer choice B is right.