Answer:
Isolate the variable by dividing each side by factors that don't contain the variable. Exact Form: x = 38/7 Decimal Form: x = 5.428571 Mixed Number Form: x = 5 3/7
Step-by-step explanation:
Answer:
12/15
Step-by-step explanation:
4/5 x 3/3 = 12/15
Answer:


Domain: All real numbers
![Range = [-1,1]](https://tex.z-dn.net/?f=Range%20%3D%20%5B-1%2C1%5D)
Step-by-step explanation:
Given
The attached graph
Solving (a): f(0)
On the attached graph
when 
So:

Solving (b): f(pi)
On the attached graph
when 
So:

Solving (c): Domain
There is no restriction on x.
Hence, the domain is the set of all real numbers
Solving (d): Range
In the attached graph


So, the range is:
![Range = [-1,1]](https://tex.z-dn.net/?f=Range%20%3D%20%5B-1%2C1%5D)
Hello,
Here is the demonstration in the book Person Guide to Mathematic by Khattar Dinesh.
Let's assume
P=cos(a)*cos(2a)*cos(3a)*....*cos(998a)*cos(999a)
Q=sin(a)*sin(2a)*sin(3a)*....*sin(998a)*sin(999a)
As sin x *cos x=sin (2x) /2
P*Q=1/2*sin(2a)*1/2sin(4a)*1/2*sin(6a)*....
*1/2* sin(2*998a)*1/2*sin(2*999a) (there are 999 factors)
= 1/(2^999) * sin(2a)*sin(4a)*...
*sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
as sin(x)=-sin(2pi-x) and 2pi=1999a
sin(1000a)=-sin(2pi-1000a)=-sin(1999a-1000a)=-sin(999a)
sin(1002a)=-sin(2pi-1002a)=-sin(1999a-1002a)=-sin(997a)
...
sin(1996a)=-sin(2pi-1996a)=-sin(1999a-1996a)=-sin(3a)
sin(1998a)=-sin(2pi-1998a)=-sin(1999a-1998a)=-sin(a)
So sin(2a)*sin(4a)*...
*sin(998a)*sin(1000a)*sin(1002a)*....*sin(1996a)*sin(1998a)
= sin(a)*sin(2a)*sin(3a)*....*sin(998)*sin(999) since there are 500 sign "-".
Thus
P*Q=1/2^999*Q or Q!=0 then
P=1/(2^999)
Yo the car is.......................Step-by-step explanation: