1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RUDIKE [14]
3 years ago
5

Olivia and her three siblings bring a sack lunch to school each day, consisting of a bagel, an apple, a cookie, and a juice box.

When Olivia's mom goes grocery shopping, she likes to purchase the same amount of each lunch item so that she can make complete lunches, with no leftover items. However, each item comes in a different sized package, as shown below: Bagels: six in a bag Apples: eight in a bag Cookies: twelve in a box Juice Boxes: nine in a box Find the least number of packages she must purchase in order to have the same amount of each item.
Olivia's mom should purchase how many bags of apples?
Mathematics
1 answer:
yanalaym [24]3 years ago
4 0

Answer:

72

Step-by-step explanation:

Find the LCM

6=2x3

8=2x2x2

9=3x3

12=2x2x3

LCM=2³x3²

       =72

You might be interested in
5. (05.03 LC) What is the simplified form of the quantity of x plus 5, all over the quantity of 3x plus 4 + the quantity of x pl
earnstyle [38]

Answer:

B. \frac{4x^{2}+24x+31}{3x^{2}+13x+12}

Step-by-step explanation:

We have been given a rational expression \frac{(x+5)}{(3x+4)}+\frac{(x+4)}{(x+3)} and we are asked to simplify our rational expression.

We can see that our denominators are not equal. Since the two denominators do not share any common factors, the common denominator is simply the product of these two denominators.      

To keep the value of expression same we will multiply the same quantity with numerators and denominators.

\frac{(x+5)(x+3)}{(3x+4)(x+3)}+\frac{(x+4)(3x+4)}{(x+3)(3x+4)}  

Now let us simplify our expression using FOIL.  

\frac{x^{2}+3x+5x+15}{3x^{2}+9x+4x+12}+\frac{3x^2+4x+12x+16}{3x^{2}+4x+9x+12}

\frac{x^{2}+8x+15}{3x^{2}+13x+12}+\frac{3x^2+16x+16}{3x^{2}+13x+12}    

Now we have same denominators, so we can add our numerators.

\frac{x^{2}+8x+15+3x^2+16x+16}{3x^{2}+13x+12}    

Now let us combine like terms.

\frac{(1+3)x^{2}+(8+16)x+15+16}{3x^{2}+13x+12}  

\frac{4x^{2}+24x+31}{3x^{2}+13x+12}  

Therefore, the simplest form of our given rational expression will be \frac{4x^{2}+24x+31}{3x^{2}+13x+12}  and option B is the correct choice.

8 0
4 years ago
Pleaseee I need help on this one too
erastova [34]
I can't exactly see if the 10 at the end is negative, but I'm going to assume that it is.
10x - 6y = 8
5x - 10y = -10
= (2, 2)
} I hope this helped! {
5 0
3 years ago
Add 3 and 7. then multiply by 3.
Reil [10]

Answer:

30

Step-by-step explanation:

First, add 3 and 7

3 + 7 =10

The multiply by 3

10*3= 30

Hope this helps!

8 0
3 years ago
Read 2 more answers
If (3, y) lies on the graph of y = -(2x), then y =<br> 1/8<br> -6<br> -8
Wittaler [7]

Answer:

The answer is -6.

Step-by-step explanation:

To find the value of y in (3, y), plug in 3 for x in y = -(2x) and solve for y.

y = -(2(3))

y = -6

y = -6, so the answer is -6.

7 0
3 years ago
Read 2 more answers
Solve for x. 8.2x−6.2−7.2x=14 Enter your answer, as a decimal, in the box. x =
slavikrds [6]

Answer is: Solve for x by simplifying both sides of the equation, then isolating the variable.

x = 20.2

6 0
4 years ago
Other questions:
  • Use the given graph to determine the limit, if it exists.
    10·1 answer
  • D is between c and e, ce=17.1 and de=8 find cd
    15·1 answer
  • Which graph shows the line y - 2 = 2(x + 2)?
    13·1 answer
  • State of the given functions are inverses
    13·1 answer
  • What is the perimeter of triangle OJL?<br><br> A.24, B.23, C. 19, D.17
    13·1 answer
  • Write 0.63 as a fraction in simplest form.
    14·2 answers
  • Please answer, thank you
    14·2 answers
  • Ok this is an easy one.<br> -1.5 multiplied by what will get me -1?
    13·1 answer
  • A Function is defined as K(x)= 2x^2 -5x +3.The value of K(-3) is
    13·1 answer
  • One of the five quadratics below has a repeated root. (The other four have distinct roots.) What is the repeated root?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!