Answer:
26.75 units ^2
Step-by-step explanation:
Since the shape is complex, divide it into 3 right angled triangles and one square. Find the area of these individual shapes first, then fin the sum of these area to calculate the ultimate area of e complex shape:
Triangle 1 = 1/2 x 2 x 5 = 5 units ^2
Triangle 2 = 1/2 x 2 x 2 = 2 units ^2
Triangle 3 = 1/2 x 3.5 x 9 = 15.75 units ^2
Square = 2 x 2 = 4 units squared.
Now add all these up 15.75 + 2 + 5 + 4 = 26.75 units squared.
Hope this helps
Answer:
A. 1/3
Step-by-step explanation:
From 1 to ___, ____, and 2 is half and half that would be 2 and a half. the only solution would be 1/3

As we know :
Dividend = Divisor × Quotient ( taking remainder as 0 )
So, Quotient = Dividend ÷ Divisor
by using the above relation we can say :
therefore, correct option is C. t ÷ 23
- Square <em>:</em><em>4</em><em> </em><em>sides</em><em>,</em><em>each</em><em> </em><em>side</em><em> </em><em>9</em><em>0</em><em> </em><em>degrees</em><em> </em><em>.</em><em>.</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>:each angle is 90 degrees
: 4 diagonals
- Rectangle: 4 sides..4 angles..2 diagonals..
- Rhombus : <u>4</u><u> </u><u>sides</u><u>.</u><u>.</u><u>2</u><u> </u><u>angles</u><u>.</u><u>.</u><u>.</u><u>2</u><u> </u><u>diagonals</u><u>.</u><u>.</u>
- Parallelogram : 4 sides..4 angles..2 diagonals..
- Quadrilateral: 4 sides...4 angles...4 diagonals..
<em>If</em><em> </em><em>this</em><em> answer</em><em> helps</em><em><u> you</u></em><em><u> plz</u></em><em><u> mark</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
<6
Step-by-step explanation:
Corresponding angles have the same matching corner when a transversal line crosses tow straight lines.
Thus, in the diagram given, the angle that has the same matching corner with <2 is the angle that corresponds to <2.
<6 has the same matching corner with <2.
Therefore, <6 corresponds with <2