<h2>Answer:</h2>
The correct option is B which is micropyle.
<h3>Explanation:</h3>
- Generally micropyle is known as the opening in the ovule or egg from which sperm enters the egg.
- But at the time of germination it is used to absorb water and nutrients.
- It is the micropyle from which the root emerges from the seed.
Answer:
Waldemar carried the recessive allele.
Explanation:
The carrier is the individual that has the affected allele or mutation but does not express the trait, or might express it in different levels. Although, as the person carries the mutation, she or he might transmit the genetic mutation associated with a disease to the progeny. In general, these diseases are inherited as recessive traits.
So, in the exposed example we know that:
- hemophilia is a sex-linked disorder
- hemophilia is determined by a recessive allele on the X chromosome.
- Irene is a carrier.
- Her husband is not a carrier.
- Her children Waldemar and Henry have hemophilia.
If Irene is a carrier, this means that she is heterozygous and that her genotype is X⁺X⁻ (Being the symbol + the dominant allele, and - the recessive one for that expresses the trait)
The fact that Irene´s husband is not a carrier means that his genotype is X⁺Y
Their boys Waldemar and Henry have hemophilia, so both their genotypes are X⁻Y
The best evidence to prove that Irene was heterozygous for hemophilia is that Alice carried the recessive allele.
- Alice is Irene´s Mother, and she is a carrier as well. Irene´s father, Louis, is not a carrier, so she could have inherited a dominant allele from her father and a recessive allele from her mother, X⁺X⁻, or she could have inherited two dominant alleles from both her parents X⁺X⁺. This is not proof enough of Irene being heterozygous.
- The fact that Alexandra, Irene´s sister, was also a carrier does not say anything about Irene´s genotype, because they could both share the same genotype or not. This is not proof of Irene being heterozygous.
- Frederick (her brother) was hemophilic. He received a recessive allele from Alice, but this does not say anything about Irene´s genotype.
- The fact that Waldemar (her son) was hemophilic, is the best evidence to prove that Irene was heterozygous for hemophilia. Walderman received the Y chromosome from his father and an X chromosome from his mother. The X chromosome that he received from his mother carried the recessive allele for the trait, and this is why he had hemophilia. This means that there is no best evidence for Irene´s genotype than her son´s genotype.
The correct answer would be all of the above. The bone marrow is where both types of blood cells are formed: red blood cells or erythrocytes and white blood cells of lymphocytes, along with cells that help defend the body against diseases and germs, which is the same as white blood cells. Red blood cells are vital in providing oxygen to cells as fuel whole white blood cells are responsible for maintaining immunity.
I am pretty sure that student is <span>D. Making a prediction. You can't make sure before particulare investigating, but you surely can try tu predict particular information and after that move to proveng it by performing many several actions. So, for this position I would choose the last optio as the correct answer. Hope you will agree with me :)</span>
Yes, quite frankly it is possible to find a same gene if you're in the same class of species, but finding the protein....I believe that's impossible because in every type of gene, you have the same proteins that make you function the same way. Without them you wouldn't be able to function properly.
If I found the same gene in all organisms that I've tested, I would be intrigued because that would be a giant step in evolution. My reason for this answer is because if you have the same gene that would technically mean we all specifically came from the same species of animals.
No, that's not true because other characteristics would eventually help us in many things, studies would help us get our brain much stronger and the intelligence level would be extraordinary.