1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ad libitum [116K]
3 years ago
14

When 4(9y − 5) = 10(3y + 17) − 40 is solved, the result is:

Mathematics
2 answers:
navik [9.2K]3 years ago
8 0

Answer:

B = 25

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Distributive Property

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

4(9y - 5) = 10(3y + 17) - 40

<u>Step 2: Solve for </u><em><u>y</u></em>

  1. [Distributive Property] Distribute 4:                                                                 36y - 20 = 10(3y + 17) - 40
  2. [Distributive Property] Distribute 10:                                                               36y - 20 = 30y + 170 - 40
  3. Combine like terms:                                                                                         36y - 20 = 30y + 130
  4. [Subtraction Property of Equality] Subtract 30y on both sides:                    6y - 20 = 130
  5. [Addition Property of Equality] Add 20 on both sides:                                  6y = 150
  6. [Division Property of Equality] Divide 6 on both sides:                                  y = 25
kozerog [31]3 years ago
8 0

\huge\textsf{Hey there!}

\large\textsf{4(9y -  5) = 10(3y + 17) - 40}\\\\\large\textsf{4(9y) + 4(-5) = 10(3y) + 10(17) - 10(40)}\\\\\large\textsf{36y - 20 = 30y + 170 - 40}\\\\\large\textsf{COMBINE the LIKE TERMS}\\\\\large\textsf{36y - 20 = (30 y)+ (170 - 40)}\\\\\large\textsf{36y - 20  = 30y + 130}\\\\\large\textsf{SUBTRACT 30y to BOTH SIDES}\\\\\large\textsf{36y - 20 - 30y = 30y + 130 - 30}}\\\\\large\textsf{Cancel out: 30y - 30y because that gives you 0}\\\\\large\textsf{Keep: 20 - 30y because helps solve for the y-value}

\large\textsf{NEW EQUATION: 6y - 20 = 130}\\\\\large\textsf{ADD 20 to BOTH SIDES}\\\\\large\textsf{6y - 20 + 20 = 130 + 20}\\\\\large\textsf{Cancel out: -20 + 20 because that gives you 0}\\\\\large\textsf{Keep: 130 + 20 because that helps solve for the y-value}\\\\\large\textsf{130 + 20 = \bf 150}\\\\\large\textsf{NEW EQUATION: 6y = 150}\\\\\large\textsf{DIVIDE 6 to BOTH SIDES}\\\\\mathsf{\dfrac{6y}{6}= \dfrac{150}{6}}\\\\\large\textsf{Cancel: }\mathsf{\dfrac{6}{6}\large\textsf{ because that gives you 1}}

\large\textsf{Keep: }\mathsf{\dfrac{150}{6}}\large\textsf{ because it helps solve for the y-value}\\\\\large\textsf{\bf y = }\mathsf{\dfrac{150}{6}}\\\\\large\textsf{OR }\\\\\mathsf{\dfrac{150}{6} }\large\textsf{ = \bf y}\\\\\\\large\textsf{SIMPLIFY ABOVE AND TOU YOU HAVE YOUR Y-VALUE}\uparrow\\\\\\\\\boxed{\boxed{\large\textsf{\huge\textsf{Answer: \bf y = 25} (Option B.)}}}\huge\checkmark\\\\\\\\\large\text{Good luck on your assignment and enjoy your day!}\\\\\\\\\\\frak{Amphitrite1040:)}

You might be interested in
Please help me...<br><br> Which equation best represents a trend line for the scatter plot?
igor_vitrenko [27]
Yes, the correct answer is C, I believe..?
5 0
3 years ago
The perimeter of a triangle is 23 cm. All the side lengths are integers. If one side measures 5 cm, what is the length of the la
Vsevolod [243]

A=9

B=11

C=12

D=15

THE LENGTH OF THE LARGEST POSSIBLE SIDE IS

or,9+11+12+15

or,47 answer

7 0
3 years ago
Read 2 more answers
What number is halfway between 0.2 and 0.3​
MrRissso [65]

Answer:

For numbers between 0.1 and 0.2, there is a 1 in the tenths' place: 0.11, 0.12, 0.13, and so on. For numbers between 0.2 and 0.3, there is a 2 in the tenths' place: 0.21, 0.22, 0.23, and so forth. For example, the number “seven and forty-two hundredths” can be written as 7.42.

Step-by-step explanation:

3 0
3 years ago
WILL MARK AS BRAINLIEST IF YOU ANSWER THESE CORRECTLY*** Can someone please help me with these math questions? I would really ap
igor_vitrenko [27]
ANSWER:

Question a):


\dfrac{5}{3}*x= \dfrac{5}{6}\\ \\ \\ \dfrac{5}{3}x= \dfrac{5}{6}\\ \\6(5x)=3(5)\\ \\30x=15\\ \\x= \dfrac{15}{30}\\ \\ \\x= \dfrac{\not{15}}{\not{30}}\\ \\ \\x= \dfrac{1}{2}\quad\Longrightarrow\boxed{\mathbb{ANSWER\ \checkmark}}

Question b):

\dfrac{5}{3}\div{x}= \dfrac{10}{9}\\ \\ \\ \dfrac{5}{3}\div{ \dfrac{x}{1} }= \dfrac{10}{9}\\ \\ \\ \dfrac{5*1}{3*x}= \dfrac{10}{9}\\ \\ \\ \dfrac{5}{3x}= \dfrac{10}{9}\\ \\9(5)=10(3x)\\ \\45=30x\\ \\ \dfrac{45}{30}=x\\ \\ \\ \dfrac{\not{45}}{\not{30}}=x\\ \\ \\ \dfrac{3}{2}=x\quad\Longrightarrow\boxed{\mathbb{ANSWER\ \checkmark}}

Question c):

12\%*x= \dfrac{3}{4}\\ \\ \\ \dfrac{12}{100}*x= \dfrac{3}{4}\\ \\ \\ \dfrac{\not{12}}{\not{100}}x= \dfrac{3}{4}\\ \\ \\ \dfrac{3}{25}x= \dfrac{3}{4}\\ \\4(3x)=3(25)\\ \\12x=75\\ \\x= \dfrac{75}{12}\\ \\ \\x= \dfrac{\not{75}}{\not{12}}\\ \\ \\x= \dfrac{25}{4}\quad\Longrightarrow\boxed{\mathbb{ANSWER\ \checkmark}}

Question d):

\dfrac{12}{7}*x= \dfrac{18}{35}\\ \\ \\ \dfrac{12}{7}x= \dfrac{18}{35}\\ \\35(12x)=7(18)\\ \\420x=126\\ \\x= \dfrac{126}{420}\\ \\ \\x= \dfrac{\not{126}}{\not{420}}\\ \\ \\x= \dfrac{3}{10}\quad\Longrightarrow\boxed{\mathbb{ANSWER\ \checkmark}}

Question e):

x\div{ \dfrac{8}{11} }= \dfrac{22}{7}\\ \\ \\ \dfrac{x}{1}\div{ \dfrac{8}{11} }= \dfrac{22}{7}\\ \\ \\ \dfrac{11*x}{8*1}= \dfrac{22}{7}\\ \\ \\ \dfrac{11x}{8}= \dfrac{22}{7}\\ \\7(11x)=8(22)\\ \\77x=176\\ \\x= \dfrac{176}{77}\\ \\ \\x= \dfrac{\not{176}}{\not{77}}\\ \\ \\x= \dfrac{16}{7}\quad\Longrightarrow\boxed{\mathbb{ANSWER\ \checkmark}}

Question f):

120\%\div{x}= \dfrac{14}{15}\\ \\ \\ \dfrac{120}{100}\div{x}= \dfrac{14}{15}\\ \\ \\ \dfrac{\not{120}}{\not{100}}\div{}x= \dfrac{14}{15}\\ \\ \\ \dfrac{6}{5}\div{x}= \dfrac{14}{15}\\ \\ \\ \dfrac{6}{5}\div{ \dfrac{x}{1} }= \dfrac{14}{15}\\ \\ \\ \dfrac{1*6}{5*x}= \dfrac{14}{15}\\ \\ \\ \dfrac{6}{5x}= \dfrac{14}{15}\\ \\6(15)=14(5x)\\ \\90=70x\\ \\ \dfrac{90}{70}=x\\ \\ \\ \dfrac{\not{90}}{\not{70}}=x\\ \\ \\ \dfrac{9}{7}=x\quad\Longrightarrow\boxed{\mathbb{ANSWER\ \checkmark}}

\textbf{HOPE\ THIS\ HELPS...!!}
3 0
3 years ago
Give an example of where you would use either the Commutative or Associative Property of Addition in a real world situation.
umka2103 [35]

So the best I could come up with is paper-rock-scissors; the operation takes two inputs and puts out the winner (assuming they are different).

So (paper rock) scissors= paper scissors = scissors,

But paper (rock scissors)= paper rock = paper.

This is a good example because it shows that associativity matters even outside of math.

3 0
3 years ago
Other questions:
  • What is the elimination of 20x+5y=120 and 10x+7.5=80
    8·1 answer
  • How do you solve number 27 and 28
    12·1 answer
  • Part A: The sun produces 3.9 ⋅ 10^33 ergs of radiant energy per second. How many ergs of radiant energy does the sun produce in
    13·1 answer
  • How do you write a rule for 2, 10, 5, 250? Order of operations?
    14·1 answer
  • Which expressions are equivalent to 12x + 10 + 4y?<br><br>OPTIONS are in the picture​
    14·2 answers
  • Which fractions is equal to 0.57
    12·1 answer
  • Find the sum of the first six terms of the sequence for which a2=0.7 and a3=0.49.
    5·2 answers
  • Evaluate the expression when a = 5 and b = 7<br> b +4a
    15·2 answers
  • Will give 20 points if you answer correctly, will give brainliest! Please answer and EXPLAIN! Thanks
    8·1 answer
  • Arnez Company’s annual accounting period ends on December 31. The following information concerns the adjusting entries to be rec
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!