Answer:
{1, -9, 56, -269}
Step-by-step explanation:
Evaluate the rule for n=2, 3, and 4 in sequence.
For n=2
f(2) = (-5)f(1) +11 = (-5)(4) +11 = -9
f(3) = (-5)f(2) +11 = (-5)(-9) +11 = 56
f(4) = (-5)f(3) +11 = (-5)(56) +11 = -269
The first four terms of the sequence are {1, -9, 56, -269}.
let's firstly convert the mixed fractions to improper fractions, and then subtract.
![\bf \stackrel{mixed}{10\frac{1}{3}}\implies \cfrac{10\cdot 3+1}{3}\implies \stackrel{improper}{\cfrac{31}{3}}~\hfill \stackrel{mixed}{13\frac{1}{2}}\implies \cfrac{13\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{27}{2}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{27}{2}-\cfrac{31}{3}\implies \stackrel{\textit{using the LCD of 6}}{\cfrac{(3)27~~-~~(2)31}{6}}\implies \cfrac{81~~-~~62}{6}\implies \cfrac{19}{6}\implies 3\frac{1}{6}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B10%5Cfrac%7B1%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B10%5Ccdot%203%2B1%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B31%7D%7B3%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B13%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B13%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B27%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B27%7D%7B2%7D-%5Ccfrac%7B31%7D%7B3%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20LCD%20of%206%7D%7D%7B%5Ccfrac%7B%283%2927~~-~~%282%2931%7D%7B6%7D%7D%5Cimplies%20%5Ccfrac%7B81~~-~~62%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B19%7D%7B6%7D%5Cimplies%203%5Cfrac%7B1%7D%7B6%7D)
Answer:
[y]=-18 so y belongs to (-18,-17)
Step-by-step explanation:
Answer:
9×10 to the power of -8
Step-by-step explanation:
Cause when we add power to the power we multiply them
For example
, we multiply the power so , 2×2= 4 so
=
=16
Same here
we multiply the powers so -4×2=-8
So
=
= 2.323×