Answer:
D) -2
Step-by-step explanation:
to identify the slope of a line written in slope-intercept form, it would be
the coefficient of the 'x' term
11x11=121
You have to minus the 3 feet of the door = 118
Hope this helps.
Answer:
Exact form: 
Decimal form: 
The solution for x is: The solution for x is of 10.455º
Step-by-step explanation:
We are given the following equation:

Placing into the desired format, the exact format is:

In the decimal part, we divide 8 by 9. So

Solving for x:
We apply the inverse sine. So




The solution for x is of 10.455º
Answer:
(-1, 6)
Step-by-step explanation:
The midpoint of a line segment is effectively the point that lies halfway between two pairs of coordinates on a line. The coordinates we're concerned with here are (-4, 10) and (2, 2). So first think about what is halfway between -4 and 2 (or you can add -4 and 2 then divide by 2) and do the same with 10 and 2. This will give you (-1, 6).