With annual compounding, the number of years for 1000 to become 1400 is 6.7 years
With continous compounding, the number of years for 1000 to become 1400 is 1.35 years
<h3>How long would it take $1000 to become $1,400?</h3>
With annual compounding, the formula that would be used is:
(In FV / PV) / r
Where:
- FV = future value
- PV = present value
- r = interest rate
(In 1400 / 1000) / 0.05 = 6.7 years
With continous compounding, the formula that would be used is:
(In 1400 / 1000) / (In e^r)
Where r = interest rate
((In 1400 / 1000) / (In e^0.05) = 1.35 years
To learn more about how to determine the number of years, please check: : brainly.com/question/21841217
#SPJ1
I'm assuming that when you wrote "(7x/2-5x+3)+(2x/2+4x-6)," you actually meant "<span>(7x^2-5x+3)+(2x^2+4x-6). Correct me if I'm wrong here.
</span><span>+(7x^2-5x+3)
</span><span>+(2x/2+4x-6)
-------------------
=9x^2 - x - 3 (answer) </span>
It is 12 - 2/3 = 18, then solve :)
hope that helps :D
Answer:
the answer is R13492
Step-by-step explanation:
hope it helps
Answer:
(-6, -5)
Step-by-step explanation:
If you go left 9 times from 2, it goes to -6. Ex: 2, 1, 0, -1, -2, -3, -4, -5, -6. The same goes for 3 units up from -8.