1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin2010 [14]
3 years ago
15

Fundamental Counting Principle (L2)

Mathematics
1 answer:
forsale [732]3 years ago
7 0

Answer:

As we dive deeper into more complex probability problems, you may start wondering, "How can I figure out the total number of outcomes, also known as the sample space?"

Step-by-step explanation:

hop this helps

You might be interested in
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
the waiter places a bowl of soup in front of lacy in a counterclockwise direction she passes the soup 90° the person receiving t
dybincka [34]

haifia is the answer did it on test

5 0
3 years ago
In the given figure, identify which of the line segments is longer than XY. Question 15 options: A) TU B) PQ C) VW D) RS
dalvyx [7]

Answer:

A. T, U

Step-by-step explanation:

T and U are stretched across the paper. the others seem a bit close or smaller to the size of X and Y, but when you look at T and U they seem longer than X an Y

Hope this helps!!!  :)

7 0
3 years ago
Write a real-world word problem that can be solved using elapsed time. Include the solution.
ElenaW [278]
Or...you could do this.

Lacey walks in a store at 8:30,the store opens at 12:00,how much time does Lacey have to get the store opened and stock the shelves?

4 1/2hours
3 0
3 years ago
Solve sin theta + 1 = cos 2 theta on the interval 0 less than or equal to theta &lt;2 pi
hjlf

Answer:

Ф = 0 and Ф = π

Step-by-step explanation:

* Lets explain how to solve the problem

∵ sin Ф + 1 = cos²Ф, where 0 ≤ Ф < 2π

- To solve we must to replace cos²Ф by 1 - sin²Ф

∵ sin²Ф + cos²Ф = 1

- By subtracting sin²Ф from both sides

∴ cos²Ф = 1 - sin²Ф

- Lets replace cos²Ф in the equation above

∴ sin Ф + 1 = 1 - sin²Ф

- Subtract 1 from both sides

∴ sin Ф = - sin²Ф

- Add sin²Ф for both sides

∴ sin²Ф + sin Ф = 0

- Take sin Ф as a common factor from both sides

∴ sin Ф(sin Ф + 1) = 0

- Equate each factor by 0

∵ sin Ф = 0

∴ Ф = 0 OR Ф = 2π

∵ sin Ф + 1 = 0

- Subtract 1 from both sides

∴ sin Ф = -1

∴ Ф = π

∵ 0 ≤ Ф < 2π

∵ Ф < 2π

∴ We will refused the answer Ф = 2π

∴ Ф = 0 and Ф = π

7 0
3 years ago
Other questions:
  • Which shapes can be drawn with two opposite angles equal to 105°
    10·1 answer
  • What time will Jesus come back to the Earth? Why? May you please provide the Year, date, time of day(hours and minutes). You can
    10·1 answer
  • Please show me how to do this!!
    12·1 answer
  • Which square root is NOT a whole number?
    9·1 answer
  • The difference of 2x and 15 is less than or equal to the sum of 4x and 17
    12·1 answer
  • A B C or D? With correct workings
    10·1 answer
  • melissa began atop a hill that was 1,350 feet high. she descended 120 feet, took a break and then descended 235 more feet. Which
    5·2 answers
  • PLEASE HELP 7TH GRADE MATH
    15·1 answer
  • Pls Help, 20 points!
    6·2 answers
  • PLEASE HELP <br> Here is an equation.<br> P = d(4 + tg)<br> What is the equation when solved for g?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!