It would be mol/dm^3
Formula of concentration: (no. of moles/volume of solution in dm^3)
1 cm^3 = 0.001dm^3
Hope this helped. :)
6 grams.........................
Answer:
C₄H₈O₂.
Explanation:
- Firstly, we can calculate the no. of moles (n) of each component using the relation:
<em>n = mass/atomic mass,</em>
mol C = mass/(atomic mass) = (54.5 g)/(12.0 g/mol) = 4.54 mol.
mol H = mass/(atomic mass) = (9.3 g)/(1.0 g/mol) = 9.3 mol.
mol O = mass/(atomic mass) = (36.2 g)/(16.0 g/mol) = 2.26 mol.
- To get the empirical formula, we divide by the lowest no. of moles (2.26 mol) of O:
∴ C: H: O = (4.54 mol/2.26 mol) : (9.3 mol/2.26 mol) : (2.26 mol/2.26 mol) = 2: 4: 1.
<em>∴ Empirical formula mass of (C₂H₄O) = 2(atomic mass of C) + 4(atomic mass of H) + 1(atomic mass of O) =</em> 2(12.0 g/mol) + 4(1.0 g/mol) + (16.0 g/mol)<em> = 44.0 g/mol.</em>
∴ Number of times empirical mass goes into molecular mass = (88.0 g/mol)/(44.0 g/mol) = 2.0 times.
∴ The molecular formula is, 2(C₂H₄O), that is; <em>(C₄H₈O₂)</em>
I believe the correct answer from the choices listed above is option A. The topic that the teacher is talking about would be distillation of a mixture. Gasoline is processed by distillation. Hope this answers the question. Have a nice day.
Answer:
The molarity of 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide is 0.25M.HOW TO CALCULATE MOLARITY:The molarity of a solution can be calculated by dividing the number of moles by its volume. That is;Molarity = no. of moles ÷ volumeAccording to this question, 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide. The molarity is calculated as follows:Molarity = 0.50mol ÷ 2LMolarity = 0.25MTherefore, the molarity of 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide is 0.25M.Learn more about molarity at: brainly.com/question/2817451
Explanation:
Mark me brainliest please!!! I spent a lot of time on this!!