The molecules of a liquid substance are closely packed together to each other. So as a result, liquids are denser than gases.
<h3>
What is the difference between the density of liquid and gas?</h3>
A mass of gas will have a much larger volume compared to the same mass of liquid. This is because it has a much lower density. The density of gaseous oxygen is 0.0014 g/cm3. Density is ρ=Mass Volume. We know that gas will uniformly occupy more space than liquid whatever volume is available to it. On the other hand, solids and liquids, are closely packed as compared to gas and are high-density materials where ρ is relatively constant.
So we can conclude that the molecules of a liquid substance are closely packed together with each other. So as a result, liquids are denser than gases.
Learn more about Density: brainly.com/question/1354972
#SPJ1
Answer:
It is the distance between two compressions or two rarefactions.
Explanation:
Answer: The rate increases 3 times on raising the temperature from 20degree to 30 degree
Explanation:
According to Arrhenius equation with change in temperature, the formula is as follows.
![ln \frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R}[\frac{1}{T_{2}} - \frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7Bk_%7B2%7D%7D%7Bk_%7B1%7D%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
where
= rate constant at temp 
= rate constant at temp
= activation energy
R= gas constant
= temperature = 
= temperature = 
![ln \frac{k_{2}}{k_{1}} = \frac{-85\times 1000J/mol}{8.314J/Kmol}[\frac{1}{303} - \frac{1}{293}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7Bk_%7B2%7D%7D%7Bk_%7B1%7D%7D%20%3D%20%5Cfrac%7B-85%5Ctimes%201000J%2Fmol%7D%7B8.314J%2FKmol%7D%5B%5Cfrac%7B1%7D%7B303%7D%20-%20%5Cfrac%7B1%7D%7B293%7D%5D)


Thus rate increases 3 times on raising the temperature from 20degree to 30 degree
Answer:
See image attached and explanation
Explanation:
The stratospheric ozone layer is very important in absorbing high-energy ultraviolet radiation that is harmful to living systems on earth. The concentration of ozone in the stratosphere is determined by both thermal and photochemical pathways for its decomposition. Nitric oxide, NO, is a trace constituent in the stratosphere that reacts with ozone to form nitrogen dioxide, NO2, and the diatomic oxygen molecule. The nitrogen-oxygen bond in NO2 is relatively weak. When an NO2 molecule encounters an oxygen atom, it transfers an oxygen, forming O2 and NO. The chemical reactions involved are formations of NO2 following by reaction of NO2 with atomic oxygen for form NO and O2. The sum of both reactions show that the overall reaction is simply the reaction of ozone with atomic oxygen to form two molecules of molecular oxygen. Hence, NO only serves as a catalyst, it does not undergo a permanent change itself.
I think it’s :answer choice c