Consider the converses:
a) If two planes have no points in common, then they are parallel. (true)
b) If a point lies on the y-axis, then it has x-coordinate 0. (true)
c) If two angles have the same measure, then they are congruent. (true)
d) If a figure has four sides, then it is a square. (FALSE) (A figure with 4 sides may not even be a plane figure.)
Keeping in mind that 29/6 is greater than 4, is actually 4 and 5/6, so the amount we'll "add" will be a negative one.
Answer:
Step-by-step explanation:

Answer:
Step-by-step explanation:
1 In general, given a{x}^{2}+bx+cax
2
+bx+c, the factored form is:
a(x-\frac{-b+\sqrt{{b}^{2}-4ac}}{2a})(x-\frac{-b-\sqrt{{b}^{2}-4ac}}{2a
2a
−b+√
b
2
−4ac
)(x−
2a
−b−√
b
2
−4ac
)
2 In this case, a=1a=1, b=-2b=−2 and c=-2c=−2.
(x-\frac{2+\sqrt{{(-2)}^{2}-4\times -2}}{2})(x-\frac{2-\sqrt{{(-2)}^{2}-4\times -2}}{2})(x−
2
2+√
(−2)
2
−4×−2
)(x−
2
2−√
(−2)
2
−4×−2
)
3 Simplify.
(x-\frac{2+2\sqrt{3}}{2})(x-\frac{2-2\sqrt{3}}{2})(x−
2
2+2√
3
)(x−
2
2−2√
3
)
4 Factor out the common term 22.
(x-\frac{2(1+\sqrt{3})}{2})(x-\frac{2-2\sqrt{3}}{2})(x−
2
2(1+√
3
)
)(x−
2
2−2√
3
)
5 Cancel 22.
(x-(1+\sqrt{3}))(x-\frac{2-2\sqrt{3}}{2})(x−(1+√
3
))(x−
2
2−2√
3
)
6 Simplify brackets.
(x-1-\sqrt{3})(x-\frac{2-2\sqrt{3}}{2})(x−1−√
3
)(x−
2
2−2√
3
)
7 Factor out the common term 22.
(x-1-\sqrt{3})(x-\frac{2(1-\sqrt{3})}{2})(x−1−√
3
)(x−
2
2(1−√
3
)
)
8 Cancel 22.
(x-1-\sqrt{3})(x-(1-\sqrt{3}))(x−1−√
3
)(x−(1−√
3
))
9 Simplify brackets.
(x-1-\sqrt{3})(x-1+\sqrt{3})(x−1−√
3
)(x−1+√
3
)
Answer:
[0,∞)
Step-by-step explanation:
We can easily solve this question by plotting the equation with the use of a plotting tool or any graphing calculator.
The equation is
y=3^(√x)
Please see attached image
Since the x is inside a square root, we know that x must be greater or equal to zero.
By looking at the graph, we can check that the domain of the function is
[0,∞)