Answer:
W=2/(P-2L)
Step-by-step explanation:
Answer: " m = zC / (C − z) " .
___________________________________
Explanation:
_________________________
Given: 1/C + 1/m = 1/z ; Solve for "m".
Subtract "1/C" from each side of the equation:
____________________________________
1/C + 1/m − 1/C = 1/z − 1/C ;
to get: 1/m = 1/z − 1/C ;
____________________________________
Now, multiply the ENTIRE EQUATION (both sides); by "(mzC"); to get ride of the fractions:
_________________
mzC {1/m = 1/z − 1/C} ;
to get: zC = mC − mz ;
Factor out an "m" on the "right-hand side" of the equation:
zC = m(C − z) ; Divide EACH side of the equation by "(C − z)" ; to isolate "m" on one side of the equation;
zC / (C − z) = m(C − z) / m ; to get: 24/8 = 3 24
zC/ (C − z) = m ; ↔ m = zC/ (C − z) .
___________________________________________________
Answer:
$162
Step-by-step explanation:
Discount = percentage discount ÷ 100 × original cost
Discount =
× $405 = $162
Altho' I can easily guess what you're supposed to do here, I must point out that you haven't included the instructions for this problem.
I'll help you by example. Let's look at the first problem:
"Evaluate 6(z-1) at z-4."
Due to "order of operations" rules, we must do the work inside the parentheses FIRST. Replace the z inside (z-1) with "-4". We obtain
6(-4-1) = 6(-5) = -30 (answer.)
Your turn. Try the next one. If it's unclear, as questions.