Answer:
![y=\frac{c}{\sqrt[]{x^2+1} }](https://tex.z-dn.net/?f=y%3D%5Cfrac%7Bc%7D%7B%5Csqrt%5B%5D%7Bx%5E2%2B1%7D%20%7D)
Step-by-step explanation:
(1 + x²)dy +xydx= 0

Integrate both side
![lny=-\frac{1}{2} ln(x^2+1)+c\\y=\frac{c}{\sqrt[]{x^2+1} }](https://tex.z-dn.net/?f=lny%3D-%5Cfrac%7B1%7D%7B2%7D%20ln%28x%5E2%2B1%29%2Bc%5C%5Cy%3D%5Cfrac%7Bc%7D%7B%5Csqrt%5B%5D%7Bx%5E2%2B1%7D%20%7D)
IS THAT DIRECTED TOWARDS ME
First, we are going to find the vertex of our quadratic. Remember that to find the vertex

of a quadratic equation of the form

, we use the vertex formula

, and then, we evaluate our equation at

to find

.
We now from our quadratic that

and

, so lets use our formula:




Now we can evaluate our quadratic at 8 to find

:




So the vertex of our function is (8,-72)
Next, we are going to use the vertex to rewrite our quadratic equation:



The x-coordinate of the minimum will be the x-coordinate of the vertex; in other words: 8.
We can conclude that:
The rewritten equation is

The x-coordinate of the minimum is 8
15 km
12+3=15 in total if the school is the meeting point of these two distances.
What the size of the border is. Example. You want to fence your yard. What do you do. Measure the perimeter aka the border.