<u>Answer:</u>
![h(x) = x^{3}](https://tex.z-dn.net/?f=h%28x%29%20%3D%20x%5E%7B3%7D)
<u>Step-by-step explanation:</u>
------------(1) (given)
-------------(2) (given)
so,
f(x) = h(g(x)) (given)
=
-----(from (1) and (2))
⇒
-----(taking g(x) = k)
⇒
is the function.
Answer:
Most likely wrong but i thinkkk C
Step-by-step explanation:
Answer:
158.4 pounds
Step-by-step explanation:
first find the volume of the tank
![V = 30 \times 30 \times 80](https://tex.z-dn.net/?f=V%20%3D%2030%20%5Ctimes%2030%20%5Ctimes%2080)
![V = 72000 cm^3](https://tex.z-dn.net/?f=V%20%3D%2072000%20cm%5E3)
to convert this to m^3 we know that 1m = 100cm
![V = 72000 cm^3 \times \left(\dfrac{1\,\text{m}}{100\,\text{cm}}\right)^3](https://tex.z-dn.net/?f=V%20%3D%2072000%20cm%5E3%20%5Ctimes%20%5Cleft%28%5Cdfrac%7B1%5C%2C%5Ctext%7Bm%7D%7D%7B100%5C%2C%5Ctext%7Bcm%7D%7D%5Cright%29%5E3)
![V = 72000 cm^3 \times \left(\dfrac{1\,\text{m}^3}{100^3\,\text{cm}^3}\right)](https://tex.z-dn.net/?f=V%20%3D%2072000%20cm%5E3%20%5Ctimes%20%5Cleft%28%5Cdfrac%7B1%5C%2C%5Ctext%7Bm%7D%5E3%7D%7B100%5E3%5C%2C%5Ctext%7Bcm%7D%5E3%7D%5Cright%29)
the cm^3 cancel out.
![V = \dfrac{72000}{100^3} m^3](https://tex.z-dn.net/?f=V%20%3D%20%5Cdfrac%7B72000%7D%7B100%5E3%7D%20m%5E3)
![V = 0.072\,m^3](https://tex.z-dn.net/?f=V%20%3D%200.072%5C%2Cm%5E3)
by simply converting the side-lengths to meters beforehand can give you this answer directly:
![V = 0.3 \times 0.3 \times 0.8 = 0.072 m^3](https://tex.z-dn.net/?f=V%20%3D%200.3%20%5Ctimes%200.3%20%5Ctimes%200.8%20%3D%200.072%20m%5E3)
it is given that 1 meter cube of water weighs about 2200 pounds.
![1\,m^3 = 2200 \,\text{lb}](https://tex.z-dn.net/?f=1%5C%2Cm%5E3%20%3D%202200%20%5C%2C%5Ctext%7Blb%7D)
multiply both sides with 0.072 to find our answer:
![1\,m^3 \times 0.072 = 2200 \times 0.072 \,\text{lb}](https://tex.z-dn.net/?f=1%5C%2Cm%5E3%20%5Ctimes%200.072%20%3D%202200%20%5Ctimes%200.072%20%5C%2C%5Ctext%7Blb%7D)
![0.072\,m^3 = 158.4 \,\text{lb}](https://tex.z-dn.net/?f=0.072%5C%2Cm%5E3%20%3D%20158.4%20%5C%2C%5Ctext%7Blb%7D)
hence the weight of the water in the tank would be 158.4 pounds!