Answer:
The principle benefit of regulating glycolysis by the concentration of ATP is to signals the cell to stop glycolysis as sufficient amount of ATP is already present in the biological system.
Explanation:
Phosphofructokinase 1 is allosterically inhibited by ATP.Glycolysis is a catabolic as well as exergonic process which deals with the oxidation of glucose to form pyruvate along with ATP molecules.
When ATP is present at high concentration within our body at that time there is no need to synthesize additional ATP because ATP is already present in sufficient amount.
To maintain its own homeostasis ATP allosterically inhibit the catalytic activity of phosphofructokinase. As a result glycolysis is inhibited and the glucose molecule can be utilized in other metabolic pathways.
Answer:
Hydrophobic interaction.
Explanation:
On the basis of the polarity and the dissolution of water, the molecules can be classified into the hydrophilic and hydrophobic molecules. The hydrophobic molecules can easily dissolve in the non polar solvents.
The hydrophobic interaction is important that exist between the non polar molecules. The hydrophobic interaction plays an important role in the biological system as the lipids of the cell membrane are assisted together with the hydrophobic interaction. The hydrocarbon tail is non polar molecules that contains hydrophobic interaction within it.
Thus, the correct answer is hydrophobic interaction.
Answer:
The vacuole. Large in plant cells but small in animal cells
<u>Answer:</u> The weight of the person above the surface of a planet is 635.83N.
<u>Explanation:</u>
To calculate the weight of a person, we use the formula:
....(1)
where,
w = weight of an object
m = mass of the person = 65kg
g = acceleration due to the gravity of the planet
For the calculation of weight, we need to first find the acceleration due to gravity and for that we use the formula:

where, g = acceleration due to gravity = 
G = Universal gravitational constant = 
M = mass of the planet = 
r = distance of the person from the planet = 
Putting values in above equation, we get:

Putting this value in equation 1, we get:

Hence, the weight of the person above the surface of a planet is 635.83N.