Answer:
The answer is x=16 so whatever the equations should look like it should be this:
Step-by-step explanation: 5(x-12)=20 5x-60=20 add 60 to 20 and get 5x=80 x=16
The answer is -49 because you multiply by 7.
of the candy is not m&m's.
Step-by-step explanation:
Given,
Total pieces of candy = 140
Number of m&m's = 35
Fraction = ![\frac{Number\ of\ m&m}{Total\ pieces\ of\ candy}](https://tex.z-dn.net/?f=%5Cfrac%7BNumber%5C%20of%5C%20m%26m%7D%7BTotal%5C%20pieces%5C%20of%5C%20candy%7D)
Fraction = ![\frac{35}{140}](https://tex.z-dn.net/?f=%5Cfrac%7B35%7D%7B140%7D)
Both 35 and 140 are multiples of 7, therefore,
Fraction of m&m's = ![\frac{5}{20} = \frac{1}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B20%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D)
As the number of m&m's fraction and not m&m's fraction will make a total of 1, therefore
fraction of m&m's + fraction of not m&m's = 1
fraction of not m&m's = 1 - fraction of m&m's
fraction of not m&m's = ![1-\frac{1}{4}=\frac{4-1}{4}](https://tex.z-dn.net/?f=1-%5Cfrac%7B1%7D%7B4%7D%3D%5Cfrac%7B4-1%7D%7B4%7D)
fraction of not m&m's = ![\frac{3}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B4%7D)
of the candy is not m&m's.
Keywords: fraction, subtraction
Learn more about fractions at:
#LearnwithBrainly
Answer:
Standard deviation of given data = 3.16227
Step-by-step explanation:
<u><em>Step(i)</em></u>:-
Given sample size 'n' = 5
Given data 4, 6,8,10,12
![Mean = \frac{4+6+8+10+12}{5} = 8](https://tex.z-dn.net/?f=Mean%20%3D%20%5Cfrac%7B4%2B6%2B8%2B10%2B12%7D%7B5%7D%20%3D%208)
Mean of the sample x⁻ = 8
Standard deviation of the sample
![S.D = \sqrt{\frac{Sum(x-x^{-} )^{2} }{n-1}}](https://tex.z-dn.net/?f=S.D%20%3D%20%5Csqrt%7B%5Cfrac%7BSum%28x-x%5E%7B-%7D%20%29%5E%7B2%7D%20%7D%7Bn-1%7D%7D)
<u><em>Step(ii)</em></u>:-
Given data
x : 4 6 8 10 12
x-x⁻ : 4 - 8 6-8 8-8 10-8 12-8
(x-x⁻) : -4 -2 0 2 4
(x-x⁻)² : 16 4 0 4 16
![S.D = \sqrt{\frac{16+4+0+4+16}{4}}](https://tex.z-dn.net/?f=S.D%20%3D%20%5Csqrt%7B%5Cfrac%7B16%2B4%2B0%2B4%2B16%7D%7B4%7D%7D)
S.D = √10 = 3.16227
<u><em> Final answer</em></u>:-
The standard deviation = 3.16227