A compound inequality for the graph would be:
x >= 0 and x < 2

Divide both sides by
to get


Substitute
, so that
. Then



The remaining ODE is separable. Separating the variables gives

Integrate both sides. On the left, split up the integrand into partial fractions.




Then

On the right, we have

Solving for
explicitly is unlikely to succeed, so we leave the solution in implicit form,

and finally solve in terms of
by replacing
:



<span>9a + -3(2a + -4) = 15
Reorder the terms:
9a + -3(-4 + 2a) = 15
9a + (-4 * -3 + 2a * -3) = 15
9a + (12 + -6a) = 15
Reorder the terms:
12 + 9a + -6a = 15
Combine like terms: 9a + -6a = 3a
12 + 3a = 15
Solving
12 + 3a = 15
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '-12' to each side of the equation.
12 + -12 + 3a = 15 + -12
Combine like terms: 12 + -12 = 0
0 + 3a = 15 + -12
3a = 15 + -12
Combine like terms: 15 + -12 = 3
3a = 3
Divide each side by '3'.
a = 1
Simplifying
a = 1</span>
Answer:
(Given m∠DCB = 105, m∠DAB = 75) m∠ADC=75, m∠AXY=105, m∠DYX=105, m∠BXY=75, m∠CYX=75, m∠ABC=105
Step-by-step explanation:
Definition of consecutive interior angles