Using Lagrange multipliers, we have the Lagrangian
![L(x,y,z,\lambda)=x+y-z+\lambda(x^2+y^2+z^2-81)](https://tex.z-dn.net/?f=L%28x%2Cy%2Cz%2C%5Clambda%29%3Dx%2By-z%2B%5Clambda%28x%5E2%2By%5E2%2Bz%5E2-81%29)
with partial derivatives (set equal to 0)
![L_x=1+2\lambda x=0\implies x=-\dfrac1{2\lambda}](https://tex.z-dn.net/?f=L_x%3D1%2B2%5Clambda%20x%3D0%5Cimplies%20x%3D-%5Cdfrac1%7B2%5Clambda%7D)
![L_y=1+2\lambda y=0\implies y=-\dfrac1{2\lambda}](https://tex.z-dn.net/?f=L_y%3D1%2B2%5Clambda%20y%3D0%5Cimplies%20y%3D-%5Cdfrac1%7B2%5Clambda%7D)
![L_z=-1+2\lambda z=0\implies z=\dfrac1{2\lambda}](https://tex.z-dn.net/?f=L_z%3D-1%2B2%5Clambda%20z%3D0%5Cimplies%20z%3D%5Cdfrac1%7B2%5Clambda%7D)
![L_\lambda=x^2+y^2+z^2-81=0\implies x^2+y^2+z^2=81](https://tex.z-dn.net/?f=L_%5Clambda%3Dx%5E2%2By%5E2%2Bz%5E2-81%3D0%5Cimplies%20x%5E2%2By%5E2%2Bz%5E2%3D81)
Substituting the first three equations into the fourth allows us to solve for
![\lambda](https://tex.z-dn.net/?f=%5Clambda)
:
![x^2+y^2+z^2=\dfrac1{4\lambda^2}+\dfrac1{4\lambda^2}+\dfrac1{4\lambda^2}=81\implies\lambda=\pm\dfrac1{6\sqrt3}](https://tex.z-dn.net/?f=x%5E2%2By%5E2%2Bz%5E2%3D%5Cdfrac1%7B4%5Clambda%5E2%7D%2B%5Cdfrac1%7B4%5Clambda%5E2%7D%2B%5Cdfrac1%7B4%5Clambda%5E2%7D%3D81%5Cimplies%5Clambda%3D%5Cpm%5Cdfrac1%7B6%5Csqrt3%7D)
For each possible value of
![\lambda](https://tex.z-dn.net/?f=%5Clambda)
, we get two corresponding critical points at
![(\mp3\sqrt3,\mp3\sqrt3,\pm3\sqrt3)](https://tex.z-dn.net/?f=%28%5Cmp3%5Csqrt3%2C%5Cmp3%5Csqrt3%2C%5Cpm3%5Csqrt3%29)
.
At these points, respectively, we get a maximum value of
![f(3\sqrt3,3\sqrt3,-3\sqrt3)=9\sqrt3](https://tex.z-dn.net/?f=f%283%5Csqrt3%2C3%5Csqrt3%2C-3%5Csqrt3%29%3D9%5Csqrt3)
and a minimum value of
![f(-3\sqrt3,-3\sqrt3,3\sqrt3)=-9\sqrt3](https://tex.z-dn.net/?f=f%28-3%5Csqrt3%2C-3%5Csqrt3%2C3%5Csqrt3%29%3D-9%5Csqrt3)
.