Answer:
Zeros are x = −2, −3 .
Step-by-step explanation:
Given : f(x) = x² + 5x + 6.
To find : What are the zeroes of f(x).
Solution : We have given that
f(x) = x² + 5x + 6.
To find the zeros of the function we need to set f(x) = 0.
x² + 5x + 6 = 0.
On factoring
x² + 3x +2x + 6 = 0.
Taking common x from first two term and 2 from last two terms
x ( x + 3) +2 ( x +3) = 0.
On grouping
(x + 3) (x + 2) = 0
Now, x + 3 = 0 and x + 2 = 0
x = -3 and x = -2
Therefore, Zeros are x = −2, −3 .
Answer:
fourteen billion seven hundred ninety millio
Answer:
<h3>
f(x) = 5x² + 2x</h3><h3>
g(x) = 6x - 6</h3>
Step-by-step explanation:
![\dfrac{5x^3-8x^2-4x}{6x^2-18x+12}\\\\6(x^2-3x+2)\ne0\ \iff\ x=\frac{3\pm\sqrt{9-8}}{2}\ne0\ \iff\ x\ne2\ \wedge\ x\ne1\\\\\\\dfrac{5x^3-8x^2-4x}{6x^2-18x+12}=\dfrac{x(5x^2-8x-4)}{6(x^2-3x+2)}=\dfrac{x(5x^2-10x+2x-4)}{6(x^2-2x-x+2)}=\\\\\\=\dfrac{x[5x(x-2)+2(x-2)]}{6[x(x-2)-(x-2)]} =\dfrac{x(x-2)(5x+2)}{6(x-2)(x-1)}=\dfrac{x(5x+2)}{6(x-1)}=\dfrac{5x^2+2x}{6x-6}\\\\\\f(x)=5x^2+2x\\\\g(x)=6x-6](https://tex.z-dn.net/?f=%5Cdfrac%7B5x%5E3-8x%5E2-4x%7D%7B6x%5E2-18x%2B12%7D%5C%5C%5C%5C6%28x%5E2-3x%2B2%29%5Cne0%5C%20%5Ciff%5C%20x%3D%5Cfrac%7B3%5Cpm%5Csqrt%7B9-8%7D%7D%7B2%7D%5Cne0%5C%20%5Ciff%5C%20x%5Cne2%5C%20%5Cwedge%5C%20x%5Cne1%5C%5C%5C%5C%5C%5C%5Cdfrac%7B5x%5E3-8x%5E2-4x%7D%7B6x%5E2-18x%2B12%7D%3D%5Cdfrac%7Bx%285x%5E2-8x-4%29%7D%7B6%28x%5E2-3x%2B2%29%7D%3D%5Cdfrac%7Bx%285x%5E2-10x%2B2x-4%29%7D%7B6%28x%5E2-2x-x%2B2%29%7D%3D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7Bx%5B5x%28x-2%29%2B2%28x-2%29%5D%7D%7B6%5Bx%28x-2%29-%28x-2%29%5D%7D%20%3D%5Cdfrac%7Bx%28x-2%29%285x%2B2%29%7D%7B6%28x-2%29%28x-1%29%7D%3D%5Cdfrac%7Bx%285x%2B2%29%7D%7B6%28x-1%29%7D%3D%5Cdfrac%7B5x%5E2%2B2x%7D%7B6x-6%7D%5C%5C%5C%5C%5C%5Cf%28x%29%3D5x%5E2%2B2x%5C%5C%5C%5Cg%28x%29%3D6x-6)
Answer:
SAS
Step-by-step explanation:
There is one common side (S)
both the triangles have 90° common (A)
Opposite sides are equal which is given (S)
They both are right angled triangles