Answer:
high tension: 4.2 × 1.5 = 6.3 cm/s
medium tension: 2.8 ×1.5 = 4.2 cm/s
low tension: 0.8 × 1.5 = 1.2 cm/s
Explanation: Given Settings:
amplitude: 0.75 cm
damping: zero
Using
Speed = frequency ×wavelength
Where
Wavelength = 0.75 × 2 = 1.5 cm
Therefore:
high tension: 4.2 × 1.5 = 6.3 cm/s
medium tension: 2.8 ×1.5 = 4.2 cm/s
low tension: 0.8 × 1.5 = 1.2 cm/s
Answer:
m1=914.9kg
m2=604.9kg
m3=864.75kg
Explanation
I think we are suppose to find the mass of the crate.
The effective force that moves the body in positive x direction is 3615N
ΣFx = Σma
Then Fx=3615N
Then the masses be m1, m2 and m3
Then,
ΣF = Σ(ma)
3615=(m1+m2+m3)a
Given that a=1.516
The masses are
m1+m2+m3=, 2384.56. Equation 1
Between mass 1 and mass 2 is, F12=1387.
The effective force that pull mass 1 is 1387.
F12=m1 ×a
Therefore,
m1=F12/a
m1=1387/1.516
m1=914.9kg.
The effective force that pulls crate 1 and crate 2 is F23
F23=(m1+m2)a
Therefore
2304=(m1+m2)a
Therefore, since a=1.516
m1+m2=2304/1.516
m1+m2=1519.8kg
Since m1=914.9kg
So, m2=1519.8-m1
m2=1519.8-914.9
m2=604.9kg
Also from equation 1
m1+m2+m3=2384.56
Since m1=914.9kg and m2=604.9kg
Then, m3=2384.56-604.9-914.9
m3=864.75kg
Answer:

The Required horizontal force is 230.04N
Explanation:
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.

where:
F_{Hn} is the required Force
u is the friction coefficient
m is the mass
g is gravitational acceleration=9.8m/s^2
Eq (1)
Now, weight increases by 42% and friction coefficient decreases by 19%
New weight=(1.42*m*g) and new friction coefficient=0.81u
Eq (2)
Divide Eq(2) and Eq (1)

The Required horizontal force is 230.04N
4 significant figures (the 0’s are considered significant because they follow a non-zero number)