Answer:
0.239 T
Explanation:
Applying,
F = Bvqsin∅................ Equation 1
Where F = magnetic force, B = magnetic Field, q = charge of a proton, v = velocity of proton, ∅ = angle between the velocity and the magnetic field.
make B the subject of the equation
B = F/(vqsin∅)................. Equation 2
From the question,
Given: F = 1.15×10⁻¹³ N, v = 3.0×10⁶ m/s, ∅ = 90°(perpendicular)
Constant: q = 1.602 x 10⁻¹⁹ C
Substitute into equation 2
B = 1.15×10⁻¹³ /(3.0×10⁶×1.602 x 10⁻¹⁹×sin90°)
B = 1.15×10⁻¹³/(4.806×10⁻¹³)
B = 0.239 T.
Hence the magnetic field = 0.239 T
A line of best fit is a straight line drawn through the most points on a scatter plot, with an equal number of points above and below the line. It is used to investigate the nature of the relationship between two variables. The correct option is d.
<h3>What is line of best fit?</h3>
A straight line with the best fit is one that minimizes the distance between it and some data.
In a scatter plot of varying data points, the line of best fit is used to express a relationship. It is a result of regression analysis and can be used to forecast indicators and price movements.
It is important to note that your line does not need to pass through any of the points on the plot; it only needs to bisect the area that contains the data points.
Thus, none of the options are correct, the correct one is d.
For more details regarding line of best fit, visit:
brainly.com/question/14279419
#SPJ1
In a parallel circuit, the equivalent resistance is the reciprocal of (the sum of the individual reciprocals).
1/R = 1/10 + 1/21 + 1/13
1/R = 0.225 mhos
R = 4.45 ohms
I = V / R
The total current out of the battery is
I = (9v)/(4.45ohms)
I = 2.02 Amperes
As the total current leaves the battery, it splits into 3 paths, and each resistor gets part of it. The 10ohm resistor gets the most current; the 21ohm resistor gets the least current. After flowing through the resistors, the 3 currents join and add up to 2.02 Amperes again, and the same current returns to the battery.
Each resistor has the same 9v of EMF across it.
Answer:
speed is 81.03 mph
direction is N 3.58 W
Explanation:
given data
travel north = 70 mph
Stream current = 12 mph
direction = S 25° E
result due north = 70 mph
to find out
speed and direction
solution
we will get component of resultant that is
v cosθ and v sinθ
so
( 12cos295 , 12 sin295 ) at ( 0, 70)
as that we can say
v sinθ + 12sin295 = 70 ....................1
v cosθ + 12 cos295 = 0 ......................2
so
vcosθ = -5.0714
vsinθ = 80.8756
now by ratio
cosθ /sinθ = -5.0714/ 80.8756
cot θ = -0.0627
θ = 93.58
so direction is N 3.58 W
and
we know
vcosθ = - 12cos295
v = - 12cos295 / cos(93.58)
v = 81.03 mph
so speed is 81.03 mph
Answer:
The acceleration of the sprinter is 1.4 m/s²
Explanation:
Hi there!
The equation of position of the sprinter is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the sprinter at a time t.
x0 = initial position.
v0 = initial velocity.
t = time.
a = acceleration.
Since the origin of the frame of reference is located at the starting point and the sprinter starts from rest, then, x0 and v0 are equal to zero:
x = 1/2 · a · t²
At t = 9.9 s, x = 71 m
71 m = 1/2 · a · (9.9 s)²
2 · 71 m / (9.9 s)² = a
a = 1.4 m/s²
The acceleration of the sprinter is 1.4 m/s²