No, it's not possible for the sides of a triangle to have those lengths.
According to the triangle inequality theorem, the sum of any two sides of the triangle has to be bigger than the last side. Let's test this.

This inequality satisfies the triangle inequality theorem.

This also satisfies the theorem.

Uh oh. This does not satisfy the triangle inequality theorem. Thus, it is not possible for a triangle to have these side lengths.
Answer:Take the alternating sum of the digits in the number, read from left to right. If that is divisible by 11, so is the original number. So, for instance, 2728 has alternating sum of digits 2 – 7 + 2 – 8 = -11. Since -11 is divisible by 11, so is 2728.
Hope this helped
Answer:
x=11/7
Step-by-step explanation: