Answer:
AA Similarity Postulate
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and its corresponding angles are congruent
step 1
Verify the proportion of the corresponding sides

substitute

 ----> is true
 ----> is true
Corresponding sides are proportional
Triangle PQR is similar to Triangle PST
That means
Corresponding angles must be congruent
side QR is parallel side ST
and
 ----> by corresponding angles
 ----> by corresponding angles
 --> by corresponding angles
 --> by corresponding angles
so
PQR is similar to PST by AA Similarity Postulate
 
        
             
        
        
        
Answer:
C
Step-by-step explanation:
anything to the power of 0=1 
Therefore, 6^0=1 
So the expression is equal to 4^2+1
 
        
             
        
        
        
The answer, in short, is that the short leg equals 15 mm, the long leg equals 20 mm, and the hypotenuse equals 25mm. but if you'd like to see how I solved it, here are the steps.
-----------------------------
The Pythagorean theorem (also known as Pythagoras's Theorem) can be used to solve this. This theorem states that one leg or a right triangle squared plus the other side of that same triangle squared equals the hypotenuse of that triangle squared. To put it in equation form, L² + L² = H².
Let's call the longer leg B, the shorter leg A, and the hypotenuse H.
From the question, we know that A = B - 5, and H = B + 5. 
So if we put those values into an equation, we have (B - 5)² + B² = (B + 5)²
Now, to solve. Let's square the two terms in parentheses first:
(B² - 5B - 5B + 25) + B² = B² + 5B + 5B + 25
Now combine like terms:
2B² -10B + 25 = B² + 10B + 25
And now we simplify. Subtract 25 from each side:
2B² - 10B = B² + 10B
Subtract B² from each side:
B² - 10B = 10B
Add 10B to each side:
B² = 20B
And finally, divide each side by B:
B = 20
So that's the length of B. Now to find out A and H.
A = B - 5, so A = 15.
H = B + 5, so H = 25.
And your final answer is A = 15mm, B = 20mm, and H = 25mm